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Block 13 continued:

point in each space. We determine the effects of bounded sensing error on a set of
image points, so that we may build a robust and efficient indexing system.

We also present an optimal indexing method for more complicated features, and
we present bounds on the space required for indexing in a variety of situations. We use
the representations of a model's images that we develop to analyze other approaches
to matching. We show that there are no invariants of general 3-D models, and demon-
strate limitations in the use of non-accidental properties, and in other approaches to
reconstructing a 3-D scene from a single 2-D image.

Convex groups of edges have been used as a middle level input to a number of
vision systems. However, most past methods of finding them have been ad-hoc and
local, making these methods sensitive to slight perturbations in the surrounding edges.
We present a global method of finding salient convex groups of edges that is robust,
and show theoretically and empirically that it is efficient.

Finally, we combine these modules into a complete recognition system, and tests
its performance on many real images.
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Recognizing 3-D Objects Using 2-D Images

by

David W. Jacobs
(dwj 4vai.mit.edu)

Abstract

To visually recognize objects. we adopt the strategy of forming groups of image
features with a bottom-up process, and then using these groups to index into a data
base to find all of the matching groups of model features. This approach reduces the
computation needed for recognition, sincc we only consider groups of model features
that can account for these relatively large chunks of the image.

To perform indexing, we represent a group of 3-D model features in terms of
the 2-D images it can produice. Specifically, we show that the simplest and most
space-efficient way of doing this for models consisting of general groups of 3-D point
features is to represent the set of images each model group produces with two lines (1-
D subspaces), one in each of two orthogonal, high-dimensional spaces. These spaces
represent all possible image groups so that a single image group corresponds to one
point in each space. We determine the effects of bounded sensing error on a set of
image points, so that we maxy build a robust and efficient indexing system.

We also present an optimal indexing method for more complicated features, and
we present bounds on the space required for indexing in a variety of situations. We use
the representations of a model's images that we develop to analyze other approaches
to matching. We show that there are no invariants of general 3-D models, and demon-
strate limitations in the use of non-accidental properties, and in other approaches to
reconstructing a 3-D scene from a single 2-D image.

Convex groups of edges have been used as a middle level input to a number of
vision systems. However, most past methods of finding them have been ad-hoc and
local, making these methods sensitive to slight perturbations in the surrounding edges.
We present a global method of finding salient convex groups of edges that is robust,
and show theoretically and empirically that it is efficient.

Finally, we combine these modules into a complete recognition system, and tests
its performance on many real images.
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Chapter 1

Introduction

The hunian ability to recognize objects visually is far more powerful and flexible

than existing techniques of machine vision. People know about tents of thousands of

(dilferent objects. yet they can easily decide which object is before them. People can
recognize objects with movable parts. such as a pair of scissors, or objects that are

not rigid(. such as a cat. People can balance the information provided iby different
kinds of visual input. and can recognize similarities between objects. Machines can

not do these things at present.

There are a variety of difficulties in modeling this human performance. There

are hard mathematical problems in understanding the relationship between geomet ri(c
shapes and their projections into images. Problems of computational complexity arise

b)ecause we must match an image to one of a huge number of possible objects. in any

of an infinite number of possible positions. At a deeper level, difficulties arise because

we do not understand the recognition problem. We do not know how to characterize

the output that should follow each possible input. For example. people look at a few
camels, and on the basis of this experience they extract some understanding of what

is a camel that allows them to call some new creature a camel with confidence. We

do not know what this understanding is.

Because recognition is such a difficult and poorly understood problem. most work

on object recognition has begun with some formalization of the problem that greatly

simplifies it. Also. many vision researchers are more interested in constructing useful

machines than in modeling human performance, and many valuable applications re-
quire recognition abilities that are much weaker than those that people possess. For

those interested in human recognition, however, there is the danger that we may solve

simple recognition problems in a way that does not contribute to the solution of more

ambitious problems.

In this work, we have tried to make progress on concrete. simplified recognition

problems in a way that still speaks to the larger difficulties of human vision. Coin-
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10 CHAPTER 1. INTRODUCTION

putational complexity presents tremendous challenges in any current version of the
recognition problem, and it seems that complexity is a fundamental part of the prob-
lem that the human visual system solves. Therefore we have adopted a strategy for
recognition that might be extended to handle problems of arbitrary complexity. A
second deep p)uzzle of human vision is how we describe an object and an image that
we wish to compare when the object is 3-D and the image is only 2-D. We also address
this p)roblem in this thesis.

\We begin this introduction by describing a well-defined version of the recognit ion
problem that still contains the difficult problems of computational complexity and
the need to compare objects at different dimensions. We then describe a strategy for
handling the complexity of this problem using grouping and ind.ring. We also show
how the indexing prol)lem forces us to confront the difficult issue of comparing a 2-D
image to a :I-D model, and describe possible solutions to this problem. But at the
same time this work has been led by our intuitions about humans. After describing
our apl)roach to recognition. we will explain how it fits these intuitions.

\\e assume a problem statement that is commonly used in modd/-bas.d object
recognition. A model of an object consists of precisely known local geometric features.
For example, we might use points to model the corners of an object. Line segments
or curved contours can model sharp edges in an object that often form occluding
contours. 2-D surfaces or 3-D volunmes can model larger chunks of the object. Most
of the work in this thesis will use points and line segments. Thesc allow us to fully
describe the edges produced b.y polyhedral objects. and also to capture much of the
shape of some non-polyhedral objects that contain corners and sharp edges. This
assunption of a precise geometric model is limiting: it is not clear that people possess
such models for the objects they recognize, or how one could apply a method based
on geomet ric models to recognize members of a class of objects. such as camels. whose
individuals vary' considerably. Within this problem statement. however, we still have
all the difficulties of recognizing a large number of complex and realistic objects.

Given a set of such models as background knowledge, the recognition system
operates on a still photograph containing a. known object. Using standard techniques
it locates 2-D features that are analogs of our model's 3-D geometric features. The use
of standard low-level vision modules to find features ensures that we are using data
that can be derived bottom-up from the image. This means. however, that perhaps
due to limitations in existing low-level vision, we will detect features imperfectly.
\Ve will miss some features in the image and detect spurious features. andI we will
enicounter significant error in localizing features in the image. So recognition becomes
the plroblem of matching model features to image features in a way that is consistent
with geometry and with these potential errors.

Figure 1.1 shows an example of such a recognition task. We use line segments
to indicate the location of edges of the phone that frequently produce edges in an
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Figure 1.1: This shows an example of a recognition task in the domain that we con-
sider. On the top left is a picture of a telephone with some objects in the background
and somt. occluding objects. On the top right,, some edges found in this image. On
the bottom, some point features located in the image (circles) have been matched to
some point features representing a model of the phone (squares). The image edges are
shown as (lotted lines, while line segments indicated the predicted location of some
portions of the telephone's boundary.
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image. \\Where two of these line segments indicate a stable vertex, we position a point
feature. This representation ignores much of the volumetric structure of the phone
in order to focus on simple 3-D features that usually show up as 2-D features in an
image. Even these simple features, however, can capture much of the structure of a
real object, such as a telephone.

\\'hv should a version of recognition that is limited to geometry provide insight
into human recognition? Under many circumstances additional information is not
available to humans, and vet their recognition process proceeds, scarcely impaired.
For example. when people are looking at a photograph of an object. or looking at a
natural object that is far away. stereo and motion cues are not available. Frequently.
objects do not have colors or textures that helps us recognize them. It seems that the
visual system is able to take advantage of whatever cues are present. but that it can
also proceed when many potential cues are absent. This thesis attempts to contribute
to an uuderstandling of how shape may be used to recognize objects. Because we seem
able to funct ion smoot hlil when only this cue is p)resent. it seems plausible that we may
be able to understand the use of shape in isolation, before we attempt to understand

its interaction with other cues.

1.1 Coping with the Cost of Recognition

Once we have modeled an object using simple features we ma"y approach recognition
as a search among possible matches between image and model features. But we
must somehow cope with an extremely large number of possible correspondences.
Furthermore. the problemn becomes harder to solve as we consider that we might have
to discriminate between many tens or hundreds of thousands of different objects. and
when we consider objects that have movable parts.

To illustrate the problem of computational complexity, let's consider how one of
the most conceptually simple approaches to object recognition. alignnl(it, requires
more and more computation as our problem domain becomes more challenging. Sup-
pose for simlplicity that our geometric features consist just of points. Then, with
alignment, a correspondence is hypothesized between some model and someri image
points. \We then determine the pose of the object that would cause the model points
in the correspondence to project near the image points to which we have matched
them. To keep the number of poses considered at a minimum. the smallest possible
number of features are matched that will still allow us to determine the pose of the
object. \¥e attempt to verify each pose by determining how well it aligns the features
that are not part of the initial correspondence. Figure 1.2 illustrates this process. in
practice, alignment sy'stems may further refine a pose using additional evidence, but
we will ignore this step for simplicity.
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Figure 1.2: This figure illustrates the alignment approach to recognition. This
example matches a 2-D mo(lel to a 2-D image with a transformation that allows
for scaling, and rotation and translation in the plane. In the upper right, the open
circles show some points used as an object model. In the upper left. closed circles
show image points. Lines between the two show two hypothetical matches between
pairs of points. The lower figures show how each of these matches can be used to
transform the model into a hypothetical image location, where it may be compared
with the image.
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The basic idea of alignment, as I have described it, was introduced by Roberts[91],
in the first system to recognize 3-D objects from 2-D images. Fischler and Bolles[43]
stressed the value of using minimal matches between image and model features. Align-
ment has been further explored in a 2-D domain by Ayache and Faugeras[3] and
Clemens[291, and in 3-U by Lowe[731, I rIlman [1041. and Huttenlocher and Ullman [57].
Chen and Kak[28] discuss an alignment approach for recognizing 3-U objects using
3-D scene data.

The computational complexity of alignment varies with the domain. \W:hen we
assume that a 2-D image includes a 2-D object that has been rotated, translated
or scaled in the plane (a similarity transform) a match between two pairs of points
determines the object's pose. If there are nI model points, and ii image points, these
give rise to about in 2 12 possible hypotheses. This is a fairly small number, and helps
explain why 2-D recognition systems have been able to overcome complexity problems,
especially when the problem is further simplified by assuming a known scale. For a
3-D object viewed in a 2-D image with known camera geometry, a correspondence
between two triples of points is required to determine a small number of poses. The
number of hypotheses in this case grows to about n' 3". This number is large. and
existing 3-1 alignment systems use techniques that we will discuss later to avoid a
raw search. If there are 11 different known models, the complexity grows to /n 3 M3.
And if ai object has a part with a single rotational degree of freedom, such as a
pencil sharpener has, then a correspondence must be established between four points
to determine the pose of the object. increasing the number of hypotheses to 110 4 711.
To place these figures in perspective, we are interested ultimately in solving problems
in which the number of objects is perhaps in the tens of thousands, and the number
of i ,del and image features are in the hundreds or thousands. Even for rigid objects,
basic alignment methods applied to the recognition of 3-D objects in 2-D images will
give rise to perhaps 1019 hypotheses. Coping with such a large number of possibilities
is far beyond the capabilities of existing or anticipated computer hardware, or current
guesses at the capabilities of the human brain.

We have used alignment to provide a concrete illustration of the cost of recogni-
tion. This cost does not arise from some peculiarities of alignment, however. The cost
of most approaches to recognition is large. and grows as we generalize the problem
by generalizing the set of images compatible with a model. That is. a 3-U model
viewed from an arbitrary position can produce more images than can a 2-D model
viewed from directly overhead. More images are compatible with a library of objects
than with one object, or with a non-rigid object than a rigid object, or with a class of
objects than with a single object model. In the case of alignment, this generality adds
to the complexity because the number of . )rrespondences needed to determine object

pose grows. As Grimson[47] shows, the complexity of constrained search methods
grows considerably as the complexity of the task grows (see in particular Grimson's
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discussion of 2-D recognition with unknown scale) for essentially the same reason.
larger matches are required before any geometric constraints come into play. Exam-
piles of constrained search approaches are found in Grimson and Lozano-PNrez[50].
Bolles and Cain[13J, Ayache and Faugeras[3]. Goad[46]. Baird[4], and Breuel[19]. For
similar reasons. the complexity of other approaches such as methods that explore
transformation space (Ballard[5]. Baird[4], Clemens[29]. and ('ass[26],[27]) and tem-
plate matching (Barrow et al.[6], Borgerfors[14]. and ('ox. Kruskal and Wallach[35j)
will grow as tile range of images that a model can produce grows. In fact. these
approaches have usually been applied only to the simpler 2-D recognition problem.

1.2 Our Approach

In this thesis we show how to control this cost 1by" doing as much work as possible
on the image. independent of the model, doing as much work as possible on the
model. independent of the image. and then combining the results of these two steps
with a simple comparison. This approach originates it the work of Lowe[73]. It lha,
been discussed in Jacobs[60]. ('lemens[30] andl in Clemens and Jacobs[32]. and in our
discussion we will freely make use of points made in those papers. This approach
reduces complexity in a numl)er of ways. First, much of the complexity of recognition
comes from the interaction between model and image, so we keep this interaction as
simple as possible. Second. as much work as possible is done off-line by preprocessing
the model. Third, processing the image without reference to the model can take
the form of selecting portions of the image that are all likely to come froom a single.
unknown object. This allows us to remove most possible combinations of image
features from considermti_: "vithout having ever to compare them to model features.
And because this process is independent of the model. it does not grow more complex
as we consider large libraries of object,, non-rigid objects, or classes of objects.

The first step. grouping (or p(rcfptual organization), is a process that organizes
the image into parts, each likely to come from a single object. This is done bottom-
up, using general clues about the nature of objects and images. and does not depend
on the characteristics of any single object model. The idea that people use group-
ing may be prompted by the introspection that when wo look at even a confusing
image in which we cannot recognize specific object,. we see that image as a set of
chunks of things. not as an unorganized collection of edges or of pixels of varying
intensities. A variety of clues indi-'" the relative likelihood of chunks of the image
originating front a single source. The gestalt psychologists suggested several clues.
such as proximity. symmetry, collinearity, and smooth continuation between sepa-
rated parts. For example. in an image of line segments. two nearby lines are more
likely to be grouped together by people than are two distant ones, and gestalt psy-
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Figure 1.3: Some of the clues that can be used to group together edges in an image.
In each example. some lines are shown in bold face that a grouping algorithm might
collect into a single group based on one particular clue.
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chologists suggested that this is because they- are more likely to come from a single
object (see Kohler[67] and \\ertheimer[113] for an overview of this work). Witkin
and Tenenbaum[115] and Lowe[73] have applied this view to computer vision. Other
recently explored groupinig clues include the relative orientation of chunks of edges
(Jacobs[60], Huttenlocher and \:ayner[58]). the smoothness and continuity of edges
(Zucker[116], Shashua and Ulhnan [96], Cox. Rehg. and Hingorani [361. Dolan and
Riseman[41]) including collinearity or cocircularitv (Boldt, Weiss and Riseman[24].
Saund[93]), the presence of salient regions in the image (Clemens[30]). and and the
color of regions in the image (Sveda-Mahmood[99]). Figure 1.3 illustrates the use of
some of these grouping clues. Our view of the grouping process is that it combines a
wide variety of such clues to identify clumps of image features. These clumps need
riot be disjoint, but their number will be much smaller than the exponential number
of all possible subsets of image features.

Grouping can also provide structure to these features. For example. if we group
together a convex set of lines, we have not only distinguished a subset of image lines,
convexity also orders these lines for us.

The second step in our approach to recognition is indf.ritig. WVe use this as a
general term for any simple, efficient step that tells us which groups of .i-D model
features are compatible with a particular group of 2-D image features. Grouping will
provide us with sets of image features that contain enough information so that only
a few of the groups of model features will be compatible with them. To capitalize on
this information, indexing must be able to use that information to quickly narrow its
search. Ideally, the complexity of indexing will depend only on the number of correct
matches. avoiding any search among incorrect matches.

The word indexing evokes a particular approach to this problem through table
lookup. In this approach. we store descriptions of groups of model features in a hash
table. at compile time. Then, at run time, we compute a description of an image
group, and use this description to access our table, finding exactly the set of model
groups compatible with our image group. There are important problems raised by
such an approach in determining how to represent our model and image groups to
make such a comparison. But indexing satisfies our need to use the rich information
provided by grouping to quickly find only the feasible matches. It also forces us
to confront one of the key problems in human image understanding: How can we
describe a 3-D object and a 2-D image so that we may compare the descriptions in
spite of the difference in dimensionality?

To make this discussion more concrete. I will describe the recognition system that
is presented in this thesis, which is just one possible way of implementing this general
approach. This system proceeds in the following steps:

a At compile time. the model is processed to find groups of line segments that



18 CHAPTER 1. INTRODUCTION

appear as salient convex groups in images. WVe then determine every 2-D image
that a pair of these groups could produce from any viewpoint, and store a de-
scription of each of these images in a hash table. One of the main contributions
of this thesis is the development of an efficient method of representing all these
images.

" The image is processed to find similarly salient convex groups of lines. We
choose as our salient groups those in which the length of the lines is large
relative to the distance between the lines. Both analytically and empirically.
we can show that we can find these groups efficiently. and that these groups are
salient in the sense that they are likely to each come from a single object.

" At run time. we compute a description of a pair of convex image groups. a•lu
perform matching by looking in the hash table.

" After grouping and indexing. we have a set of consistent matches between image
and model features which we use to generate hypotheses about the location of
the model.

" \We then look for additional model lines in the image to evaluate these hypot he-
ses.

Processing the models is done at compile time. and does not directly affect the run
time of the system. Processing the image is efficient because it does not depend at all
on the complexity or number of models. and because our desire to find salient groups
of image features provides us with strong constraints that limit the sets of image
groups we need to consider. The combinatorics of matching models and images is
reduced because the time spent looking in the hash table depends primarily on the
number of valid matches between model and image features, not on the nunmber of
invalid matches that must be ruled out. So with this approach the complexity of
recognition depends entirely on the capability of our grouping system. First of all. it
depends on the cost of the grouping system itself. Second. it depends on the number
of groups produced: the more groups we must consider. the longer recognition will
take. Third. it depends on the size of these groups. The more information a group
provides about the object. the fewer the number of model groups that will match it
by accident. Of course. it is difficult to quickly produce a small set of large groups,
some of which come from the objects we are trying to recognize. But we may at least
see a path to extending this approach to handle arbitrary problems of computational
complexity. The better our grouping system is, the more difficult the recognition task
we can handle with it.

Stepping back from this particular instantiation, the general approach that we
advocate is to use grouping to form information-rich subsets of the model and image.
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Giouping has not been extensively explored. but it is clear that there are many clues
available in aii image that indicate which collections of image features might come
from the same object. If we call group together enough image features, we have a
good deal of information about the object that produced these features. Grouping is
necessary so that we do not have to search through all combinations of image features.
If we also know what collections of model features tend to produce image features
that we will group together. we can also group the model features at compile time,
limiting the number of model groups we must compare with the image groups. But
to take advantage of the information an image group gives uts about ali object. we
need a flexible indexing system that can quickly match these image groups to geoimet-
rically consistent model groups. So there are two central problems to implementing
our approach. \We must determine how to form large groups. and we must develop
indexing methods appropriate for large groups of features.

1.3 Strategies for Indexing

This thesis approaches indexing by matching a 2-D image of a scene to the 2-1)
images that known objects Imay produce. This differs substantially from most existing
approaches to visual recognition. which attempt a more direct comparison between
the 2-D image and the 3-D model. Direct comparisons to the model can be made if
we first infer :3-D properties of the scene from a 2-D image, or if we extract special
features of the image that can be directly comp)ared to a model. Figure 1.4 illustrates
these strategies. There are two main advantages to our approach. First, the image
and the model can be easily compared at the 2-D level. Second, the problem of
organizing the image data becomes much easier when we are not constrained by the
goal of reconstructing 3-D properties of the scene that produced our 2-D data.

We make these points clearer by comparing this approach to some past work.
The main thing we wish to show about previous recognition systems is that they
have been limited by a desire to directly compare a 3-D model to a 2-I) image. In
or(ler to accomplish this. they have focused on descriptions of the model that are
view-invariant. That is. a model is described with a property that is really a function
of an image. but which we may associate with the model because the property is true
of all t lie model's images. Since a model is described with an image property. we ma*v
(lirectlv compare the model and image to see if they have the same property. As an
example of a view-invariant property. if two lines are connected in a 3-1) model. they
will be connected in any image of that model (disregarding the effects of error and
occlusion). We will see how various systems have adopted techniques for comparing
images to the invariant properties of models. At the same time, we will see that
when those qystems perform grouping. this grouping has been centered around view-
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Figure 1.4: There are two main approaches to indexing 3-D models (double box in
upper right) from 2-D images (double box, lower left), as shown by the two types of
dashed lines. We may characterize the images a model can produce. and compare

in 2-D. Or we may attempt. a direct comparison to the 3-D model. We can do this
by deriving 3-D structure from the 2-D image. or by in some other way creating
structures from the image and model that are directly comparable. Inferences are
shown by single arrows, direct comparisons are shown by double arrows.
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invariant feat ures. If t hese are the basis of comparisons. t hen It miakes sense for a
grouping systemn to organize the image into (chunks basedl onl which ('hunks cont aml
view-iinvariant features. Grouping and Indexing b~ecomne entangled as group)ing st riVes
JpriniarlvY to p~rodluce chunks of thleiae that contain thle propertijes suit able for'
indlexing.

There has been. however, a lack of general met hods for describ~ing a mfodlel and anl
image inl direct ly corresp~ondling way's. There has not been, for example. a comnprehien-
sive set of view-invariant features that capiture all or eveii most of' thle informat ion inl
anl object miodel. To overcome this. sx'stells sometimes mlake rest rictive assumlpt ioiI

albout the models. And the use of onlY a few view-invariant lprop(ert ies has iiitaiit
that thle clues usedl for groupinig have beeni limitedl, sinc(e grouping has b~eeni basedl onl
these properties. Overall. b~ecause the systemis suffer fromi a lack of genmeral muethlods
of inferring :3-1) st ruct ure from 2-1) imiages t hey ignore the 2-I) inmformiation that t hey
cannot tise. lbothI in the groupling phase alid iii thle indexing p)hase. Our app~roachlo
indlexing compares a 2- D imiage with the linages a 3-D) muodel c-anl produce. inisteadl
of directly cormparinmg to sonme property* of the :3 D model. Wec Just ify this a ppr'oachm
bY describing how past systemis have failed to find comprehensive methlods of' makiing
(direct comparisons, how t his has led to indexing t hat uses oildy im poverished infor-
mat ion fronm the image. and( how at the same time group~ing has also lbeeii caught bY
these limitations, and made use of impoverished informat ion as well.

As we look at these systemis, it will also be a convenient time to notice the~ imipor-
tance that group)ing piocesses have played in controllinig the comiplexit'y of recogmiitiloii
systemns. \Vhile grouping ma~s made use of hiflhitedl clues. its performiance has beeni c'ni-
cial in controlling the amount of computation needed bY' recognit ion systenis. Evein
systenms that do0 not focus onl grouping have dlependedl onl it to make t heir algorit lumuis
tract able.

Rotberts* work[91] providles a clear demonst rat ion of these points. This early sYs-
teni recognized blocks world objects that prodluced very clear straight lines in images,.
Connected liles were grouped together into Polygons. and connected polygons were
combined iinto larger groups. The system startedI with the largest groups t hat it couldl
find. For example. it would group together three polygons that shared a vertex. It
would then Ilse thle number of lines inl each pol 'ygon as a viewlpoiit -independent de-
scrip~tion of' thme group. amid match the group only with similar model group)s. Eachl
match was usedl to determine a h 'ypothetical p)ose of the object. and the p~ose was
used to determmine the location of additional model feat ures. whose presenice in thle
image co0uld( coid irmi the hvpot hesis. The system lbega~n with larger image groups.
which tendl to match fewer model groups. but it would continue by trying smaller
and~ smnaller groups until it found the dlesiredl object. As a last resort. the systemn
would consider' groups based onl a vertex formned by three lines, and including the
three vertices onl the other ends of each line. Any image group of four such points
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could( miatchi all.\- sticl model(( groupl ( giv\en t he Svst emls iiiodel of' proecion)

This svst enI is relevanit to our1 IiscussIOll III a 111,1111)( of wayS. First . U01lwit

clerl v ecginized the imlportance of grouping [it redlncilig thle cost of' reccogimtol~lL
and~ used groups essentiallY to index in~to a data base of Objects based oil viewfpoint-
Iinvarianlt p~roperti1es. R1obert s also realized that larger grouips ('1)111( provide i noret
(liscrili nat orY power for Indexinig. OnlY simnple objects. however. couldl be hiandledI

bthis approach to grouiping and indexing. A.lso Roberts did nol get a lot of (I is-

crinuiuiuator.'v power out of some big groups of feat ures. Oil]\ thle miiiiber of sides III

each polygon were tisedl for iidexiiig. As we will see, this is only a tiny part oif' (lie,

iiuforinat ioll t hat is available wvit It suich groups. Tlhis hliiit at loll is it direct conisequhenice

of lusing onlly viewpoiut - invarialit descriptions for indexing.

The A(CRON YM sv, steii of Brooks[2 I]. which is based oil aii earlier p~rop~osal lbY
13inford[( l1j represenits 31-D m~odlels using a limi1ted form of' q n uliz cmone. For

110 NY NIs versioni of' generalizedI cones t here Is a simpllie m apping 1betw~eeni prop)-

ert ies of a cone and~ of its imiage. Thuese (cones" are volinmes which have a st raighit
cenitral Ispihie. Thie cross-sect ioll of' thle cone ort hogonial to this spilie is b~ounided bY
st raiglt fines or circ~les. As tlie( spinie is t rav'ersed. this cross-sect ion iuia ,v grow~ or
shrink linearly' . These parts have the pl'opertv t hat their projection onto a 2-1) imlage

alway, s has a siminple f'oi'ni eit her a qjuiadlri later'al (or r'ibbo n) w~hen seen from ab ove.
01' (1111 pt ical whlen a c'irculai' cl'055-s(N't i0l Is seeui enid-011. 'I'lerefore. a lbot t 011-li p

gfrOuljipig p)roc'ess may be used to find ellipses and ribbons lin the imiage. wh'Inci ar'e
matc('led to tile 3-D) gener'alizedl conies. Bot h thle model and thle image ai'e organizled
ut o in f'oi'inatioul-rich pr'imi t ives. MIuc'h less ('output at loll is nieedled to finld all ob)ject

using this groulping thanl Nv'hei simplher primitives. sn('li as points, lines. or mindividiial
edge pixels are used. because only a few Iprinlilti yes mutst be muat ched to idenitifv all
object. ACR'lONYM' seeiiis to only needl to mat ch two of' thlese imiage p~rimiit ives to

c'omplarab~le modlel primiit ives lin ordler to rec'ognize a miodlel. Also. 'ompu~lt at ion is
redluced becauise an limage o'ont atis fewver of these primitives t han of simpler ones.

( omputat ioiiall *v. ACR'IONYMI benefits from organizing bothi thle miodel amid thle

iiiage Into higher lev'el units before 'omlparinig tlit( two. Hut oudl' 3-D) priniit ves t hat
poetto dietyaalogouis 2-1) p~rimuitives are chosen. This great).\- limuits tt,1p

of' objects that canl be miodeledl. The c'hoice of Primiit ives to uise to miodel objects, has

keeni ma~le not aco'r'dinig to thle requiremnitits t hat arise ft'omi thle nieed to r'epresenit a
variety* of ob jects. btut ac'cor'dinig to strong ('onst raint s oui what 3- D primnit ives can be

readlily comhpar'ed to 2-i) parts. The( groutiping sy'stemu is t heni basedl oil the fac't t hat a
('lass of' simple miodel p~arts project to a class of simuple imuage parts t hat we (-ami look
for with a bottom-up pr'ocess. Again. comIparlsoi lbetween 3-D and~ 2-1) is made wvith
simpile but not very general prolpert ies. and~ group)ing is based oii t hese pruopert ies.

Mart' and~ Nishihiara[79] also dliscuiss a recognition strategy based onl generalized
c'ones. They (10 not p~resent all implemented system applied to real images. anid so
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S011W of thle (it-tails ol t heir approach are vague. A (011 coponent of' thelci a pproachi
Ihowever. is tile assulI 1~)tIOlIi t hat ti( Ve Can gr'oupI aii lImage inito comlponients prodluced

I). s~~eparlate gonel'alized cl (0it. anid the del (tect thle (central axis of' each IcoliC froini a

sinlgle 2-1) im lage. T his also i Implies limlit ing tlie( modhels and~ Imnages lhand~led so that
lie piroject lols ol colies hiave a stable cent ral axis. LhieY suggest t hat thle relationishiips

k etw'eeui a set of, t hese cones wvIII be uised to Index Into0 a dat a b ase of oh ect s .Avarlet v
of' prop~ertiles oh thle conies andI theicir relat ionslii S areC suggested for- Use III Inidexin1g.

1buit it is not clear exact I v how t his inidexinig will work. To someW ext enit. Ma IT and~

N islii Iiara ex pect to mi ake utse of '- ) iiiformiatlol (dellived froiii stlereo. or ot her sources.

to get41liii i Ilie thle 3-DI rela tjotish ips bet weenl cones. Bunt 2-1F) clues. su clh as th~e rehiti ye

thickness of cones. or s 'vnnmetr it iiitlie im Iage. are also suggested.

M arr aind N ishl iara's proposal. alid \laris[T81 work iii genieral is quite liuipor.-

Salit to our, discuissloll lbeca uise oh, t heir early s-tress on t lie~ imiiport ance of' hot toiii-u

processinhg for recogiiit ioll. lIn Ma rr's iea great (leal of' (011 tit at ion should be
done oil lie iniage before we at templjt to comipare it to a iluodel. This compjuit at ion

should dlepend~ on enra projpert les of' th lieniage formiatiloln proce~ss. iiot onl specific

propferties of tilie ob)ject s that we ex pect to see. fin .\arr and~ N ish iliara' s view, anl
imiage is broken ili) into compoinent p)art s. and~ thlese parts andI thleir relat ionishi ps are
described Ini (etail before wve attempljt recogniit ion. This Is a prescript ion for a quite1
amilit ions allio~Illt of group~ing Ill recognitilon.

We also see iii t heir app1roachl somle of tilie pitfalls of' usiing view-linvarlalice for)I
(rrolipinug and~ Indi~exinlg. G eneralized(- ones are suggest ed as represent atious pri ia rily

because it is felt that their axes wvill be stable over a ranige of viewpoinlts5. not because

of, their representational adleqiac *v. An 11comip[ulting view poinlt In varinait properties

to use in Iindexiing requires a great dleal from thle bolto11-HI) proces's-i g. C omiplet e

segm en tedl generalIizedI conies mIust be fLou 11(. and~ 3-1D scene Iniformi at ion is requiiiredl to

compilulte tlie( relat ioniships lbet weenl thlese (.oiies.
Lowe's wokT1 is ae a ftI( points t hat wve have dijciissed so far. while

his work tii turn was influenced by WVit kii and 'Leuienhauni[ft I Y. Lowe st ressed thle
iilill)o~t ance of gr,-IOul)inlg inl redutcinig thle coinplexit V of recognit ion. Iliealso for t le first
tiiie st ressedl the value of usinig viewpoint inva rianice tin grou pinug an uinudexinug. I Ic

developed probab~ilist ic arguments to sup)port thle idea that groups of' feat iires wit Ii
viewpoint inain rprisare patcial'vlkl'v all to comie fromi a single 0lbject.
andl showed how thfese properties could b~e uised for indexing as well. 'I'lie priniarY
exampille Lowe gives Is that of group~ing together parallelograms. Parallellisn is a
vlewjpoilt -Iinvariaiit propertyv if wve assume orthiographlic projectilon. t hat is. a projec-
tion model withI no p)ersp~ect ive (list ort ion. In I that case. 3-D) parallel hines wvil always
p~roject to 2-I) p~arallel lines. while 3I-D linies that are not parallel c-at onil v appear

parallel froni a tiny range of viewpoints. (Connectedness is also a viewvpointt -invariant
p~roperty. Byv coimblininlg thiese. we have a st rat egy for grouping It y forming parallel-
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Figure 1.5: A geon-based description of this suitcase is given in the text.

ograms in the image, and indexing by matching these only to parallelograms in the
model. Such matches form a good starting point in the search for an object. Lowe's
recognition system uses this approach to efficiently locate some common objects. such
as a stapler.

Lowe's work provided the first analysis of grouping and how it could be used to
solve recognition problems. and it has had an important influence on the work de-
scribed in this thesis. His emphasis on the need for grouping in recognition is the
starting point for this work. In chapter 5 we will have more to say about the view-
point invariant features Lowe used. Here, we simply point out that Lowe's decision
to match 3-D models directly to 2-D images using view-invariant features greatly
limited the extent of grouping possible. Only a few kinds of features were used by his
system to form small image groups, because these were the only features known that
could be easily compared across dimensions. The small groups that are formed with
this approach provide only limited amounts of information about the model, and so
they produce only moderate reductions in the search for models. This approach also
depends on models that contain significant numbers of viewpoint-invariant features,
such as parallelograms.

Biederman[9] built on Lowe's work to produce a more comprehensive model of
human object recognition. Bergevin and Levine[8] have implemented this theory for
line drawing- of some simple objects. Biederman suggests that we recognize images
of objects by dividing the image into a few parts, called geons. Each geon is described
by the presence or absence of a few view-invariant features such as whether the part
is symmetric. and whether its axis is straight. Connections between parts are also
described with a few view-invariant features. Together, these provide a set of features



1.3. STRATEG;IES FOR INDEXING 25

which Biederman believes will identify classes of difftrent objects, such as suitcases
and coffee mugs. For example, consider the suitcase shown if figure 1.5. Tile case
is one geon. described by" four view-invariant features: its edges are straight. it is
svinimetric. its axis is straight, and its cross-section along this axis is of constant
size. The handle is a geon with a different description because its edges and axis are
curved. An example of a view-invariant, feature of the connection betweei the two
geois is that the two ends of the handle are connected to a single side of the case. 'We
can see that computing a description of a geon requires a fair amount of bottom-up
processing. Geons must be segmented in the image. and their axes must be found.

Biederman explicitly makes the claim that \'iew-invariant features can provide
enough information to allow us to recognize objects. Although Biederman does not
completely rule out the possibility of using descriptions that vart\ with viewpoint,
he does not describe how to use such information. and downplays its importance.
Throughout this section. we have been arguing that on the contrary, reliance on view-
invariance has led to impoverished groups that lack discriminatory power. In chapter
5 we show some limitations to what view-invariant features can capture about the
3-D structure of an object. Here we point out two possible objections to Biederman's
claim that a few parts and a few view-invariant properties can serve to distinguish
objects. These are not logical fallacies of Biederman's theory, but simply empirical
questions that we feel have not been adequately explored.

First, although we have emphasized the importance of grouping. Biederman's ap-
proach places especially strong requirements on grouping and other early processing
modules. Because view-invariant features capture only a fraction of the information
available to distinguish objects. it is natural that a system that relies entirely on these
features w:ll require more effective grouping than might otherwise be necessary. One
must reliably segment an image into parts, and sufficiently detect these parts so that
one can determine the viewpoint-invariant properties they possess. It is problematic
whether this can be done in real images with existing early vision techniques. and
Biederman's approach has only been tested on line drawings. However, since Bieder-
man proposes a psychological theory, it is hard to know what to expect of human
early vision and grouping, and so it may be plausible to assume that people can locate
and describe object, parts in images. This is an open question. It is not clear whether
people can consistently segment an object into canonical parts whose boundaries do
not vary with viewpoint, and whether we can derive robust descriptions of these parts
if they are partially occluded.

Second. Biederman has not demonstrated that these view-invariant properties are
sufficient to distinguish among a large collection of real objects. His theory claims that
metric information along with any other information that varies with viewpoint plays
no significant role in helping us to identify an object.. This claim is still unresolved.

As a final example, we consider Huttenlocher and tTllman's[57] application of the
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alignment method to the recognition of 3-D objects in 2-D scenes. This work does
not focus at all upon grouping: rather it analyzes many of the problems that arise
in implementing alignment for 3-D to 2-D matching. However, to get the system
to work in practice. a simple grouping method was used. Pairs of vertices that
were connected by a straight line were combined together. This type of connection
is another viewpoint invariant feature. This example points out the omnipresence
of grouping and indexing based on simple viewpoint invariant features in practical
recognition systems.

Each of these systems uses a different set of view-invariant features to match be-
tween a 2-D image and a ;3-D model. In each case we can see that only a small fraction
of an object's characteristics can be used for indexing. Most of an object's appearance
is not view-invariant. One part of an object may vbe much larger than another in some
images. but this difference in relative size may change over views. Shapes in an object
may appear somet imes convex and sometimes non-convex. soniet imes sharply curved
and sometimes moderately curved. The approaches discussed above must ignore this
kind of information when doing indexing. As a result, the types of objects that can
be modeled are quite limited. And the groups that are formed in the image tend to
be small because there are few clues available for grouping. Witkin and Tenenbaum
and Lowe have argued that when a set of features produce a view-invariant property
this is a clue that these features come from a single object. But even if this is true.
view-invariance is not the only such clue. However, it is tile only clue that tends to
be used for grouping when indexing relies on view-invariance. Forming small groups
using these properties has been a useful step beyond raw search. But these groups
do not contain enough information to discriminate among a large number of possible
model groups. So these systems are left with a good deal of search still to perform.

One could take these comments as a spur to further research in view-invariant
features. With more such features available to us. we could provide coverage for a
wider range of objects. and we could expect to find image groups containing many
of these features. In chapter 5 )we are able to fully consider this question for the
simple case of objects consisting entirely of point features. XVe characterize the set
of inferences that we can make about the 3-D structure that produced a particular
2-D image. And we show that any one-to-one mapping from a 2-D feature to a 3-D
feature will have serious limitations, and will require strong assumptions about the
nature of our object library in order to be useful.

This thesis argues that we should transcend the limitations of view-invariant prop-
erties by comparing a 2-D image against the 2-D images that our 3-D models can
produce. We show that these images can be simply characterized. This allows us ex-
plicitly to represent the entire set of image groups that a group of model features can
produce. when viewed from all possible positions. Indexing then becomes the problem
of matching 2-D images, which is relatively easy. As a result, we are able to build
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an indexing system that can use any group of image features to index into a model
base that represents an\y group of model features. This means that our bottom-up
grouping process is not constrained to produce groups with a special set of features.
Grouping may make use of any clues that indicate which image features all belong to
the same object.

1.4 Grouping and Indexing in this Thesis

In this introduction. we have focused on the comlbinatoric difficulties of recognizing
objects. W\e have described how these problems can be overcome by a system that
forms large groups of image features, and then uses these features to index into
a library that describes groups of model features. This gives rise to two difficult
subproblems: how do we form these groups*? and how do we use them for indexing?

There are two criteria that we might use in forming groups of image features.
First we can group together features that all seem likely to come from a single object.
And second we can form groups that contain properties that are required by our

particular indexing scheme. I have described how these two motivations have become
entangled in many existing recognition systems. so that groups are formed only if they
fulfill both criteria at once. W\hen view-invariant properties are used for matching,
grouping is limited to producing groups that, have these properties. In this thesis we
suggest that more extensive grouping can be done when our indexing system allows
us to make use of any clues in the image that indicate that features originate with a
common object.

In chapter 6 we describe a grouping system that makes use of one such clue, by
locating salient convex groups of image lines. Convexity is a frequently used grouping
clue because objects often have convex parts. We define a notion of salicnt convexity
that allows us to focus on only the most relevant convex groups. XXe show both
experimentally and analytically that finding these groups is efficient, and that such
groups will be likely to come from a single object. This is not meant to suggest that
salient convexity is the only, or even the most important clue that can be used in
grouping. Rather, it is a sample of the kind of work that can be done on grouping.
It is a thorough exploration of the value of one grouping clue out of many.

The second key problem to this approach to recognition is indexing. We have
described two possible approaches to indexing. The first approach compares 2-D
structures directly to 3-D structures. This is done using a one-to-one mapping from
2-D to 3-D properties. We have described in this introduction how existing systems
have made use of only a iimited set of such properties, and in chapter ,5 we thor-
oughly examine such properties, and demonstrate some limitations to their use for
indexing. The second approach to indexing is to compare the model and image at
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a two-dimensional level. The core probleml to implementing such an approach is de-
termining the most simple and efficient possible way of representing the 2-D images
that a 3-D group of features can produce. We solve this problem in a variety of cases
in chapter 2. These results have the additional benefit of providing a new and v'ery
simple way of looking at the matching problem in recognition. lin fact. these results
form the basis for the results described in chapters 3 and 5. in which we explore the
limitations of some other approaches to vision.

\Ve then put these pieces together into a working recognition system. In chapter 4
we show how to build a general indexing system for recognizing real objects. In that
chapter we consider practical problems, such as how to account for image error. We
then combine these pieces into a complete recognition system that first forms salient
convex groups. and then use these groups to index into a model base of object groups.
The matches produced by indexing generate hypotheses about the locations of objects
in the image, which are then verified or rejected using additional information about
the model. In chapter 7 we test this system and demonstrate that the coml)inat ion
of grouping and indexing can produce tremendous reductions in the search required
to recognize objects.

1.5 Relation to Human Vision

In this introduction we have focused on a simplified version of the recognition problem
in which we match local geometric features. Although we noted that it is not clear
that human recognition can be fully described as using precise geometric models.
this formulation of the problem is still quite general. and allows us to see clearly
some of the complexity problems that arise in recognition, and how we may deal with
them. However. I now ,vi, to more weakly claim that our approach to recognition
is also a promising one -,r addressing more ill-defined and challenging recognition
tasks. I claim that human vision may perform grouping and indexing, and that
in addressing these problems in a simple domain we are taking steps along a path
towards understanding human vision.

Let us consider an example. It is my intuition that one recognizes something like
a camel by first organizing an image of a camel into parts and then noting features
of these parts. The camel's torso might be described as a thick blob. with four long
skinny parts (legs) coming from the bottom corners of this blob. and a hump (or
two) on top of this blob. A long list of such features could flesh this description out
in greater detail. This idea of recognizing an object using a rough description of its
parts and their relations is not new. It seems to me to be our naive notion of how
recognition would work. and appears as a more technical proposal in the work of Marr
and Nishihara[79]. Biederman[9], and Hoffman and Richards[52], for example.
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As I have described above, however, the stumbling block for these proposals has
been a felt need to describe an object's parts in terms of view-invariant properties.
This has resulted in proposals that are simple and direct. A small number of such
properties is proposed% which provide a canonical description of the image. which can
be matched directly against known objects. However. it is not clear whether such
features could be rich enough to distinguish one object from all the others. and the
paucity of features used usually implies that the\, must all be perfectly recovered for
recognition to succeed. In fact, for reasons that are described in detail in this thesis. I
think that the search for an adequate set of view-invariant features which can explain
human recognition is not a promising one.

Instead. I propose that we use 2-D features that need not be view-invariant to
describe each of the images that a model might produce. For example. a camel s legs
are long and skinny, but -long and skinny- is not a view-invariant feature. From a
range of viewpoints. such as many overhead views. the legs will not look long and
skinny. In general, :Sere are some objects that never look long and skinny, and other
objects that look more or less long and skinny some or most of the time. I)ifferent
object parts produce this feature, to different degrees. with varying likelihood. It
is my intuition that such non viewpoint-invariant features as the relative size and
general shape of an object's parts are crucial for recognizing it. If this is true, then
we should describe objects that we know about in terms of the 2-D features that
tend to appear in images of those objects. The first step in using such features is to
understand the set of images that a model might produce. Once again. the central
problem that we face is to find the simplest and most efficient representation of this
set of images. This will provide us with a means of understanding the extent to which
different sets of 2-D features can capture the shape of a 3-D object.

It is also clear that grouping will be a fundamental problem in this attempt to
model human recognition. The intuitive strategy that I have described will also
depend on some bottom-up process that at least roughly groups together parts of
the image into objects and object parts. This will be a necessary first step towards
determining a set of features in the image that all come from one object.

These intuitions form a secondary justification for addressing the problems that
we have in this thesis. I believe that the problems of grouping and of describing the
images a model produces are central ones for developing an understanding of how we
may describe 3-D objects using a set of 2-D features.
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Chapter 2

Minimal Representations of a
Model's Images

2.1 Introduction

In this chapter we discuss optimal methods of representing the set of all images that
a group of object features can produce when we view them in all possible positions.
This is the central problem for our approach to indexing, illustrated in figure 2.1.
As we describe in chapter 1, we can effectively perform indexing by comparing an
image to the set of all images a model can produce. Since it is easy to compare 2-D
images, we can build a general indexing system that uses all the available information
in any groups of image features that we form. This releases us from the limitations
of methods that derive 3-D scene information from a single 2-D image. However, to
index efficiently we must understand how we can best represent a model's images.
Understanding this question is also valuable for analyzing other approaches to recog-
nition. When we know what images a model can produce, we can determine what it
is that any particular description of a model captures about that model's images.

Throughout this chapter we will be focusing on the problem of matching an or-
dered group of model features to an ordered group of image features. Therefore when
we talk about the model or the image we will not mean the entire model or image, but
only a particular set of features that have been extracted from the image and grouped
together by lower level processes. In chapter 6 we will describe these processes.

We take a geometric approach to the problem of representing a model's images.
This approach is based on work of the author and David Clemens, as described in
Clemens and Jacobs[32]. Related approaches can be found in Bennett, Hoffman and
Prakash[7], and in Richards and Jepson[90]. We describe models using a manifold in
image space. We will only be making use of some elementary properties of manifolds.
So for our purposes, the reader may think of an n-dimensional manifold intuitively
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Figure 2.1: With indexing. all possible 2-D images of a 3-D model are stored in a
lookup table. A hash key is then computed from a new image, and used to find any
3-D model that could produce that image.
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as an n-diniensional surface in some space. An image space is just a particular waY

of representing an image. If we describe an image using some parameters then each

parameter is a dimension of image space. and each set of values of these parameters

is a point iM image space corresponding to one or more images that are described

by this set of parameters. For example. if our image consists of a set of ni 2-I)
points, then we can describe each image by the cartesian coordinates of these points.
(.r1 . Yi. '2 . !/2 .... r,,.,, ,). These coordinates describe a 2ui-diiiensional image space.

There is in this case a one-to-one mapping from the set of posQ'! ý, images to each
point in this image space. Suppose our models consist of sets ,, u 1) points. As we

look at a model from all possible viewpoints it will produce a large set of images.
and this set of images will map to a manifold in our 2n-dimensional image space. We
will therefore talk about a model group producing or corresponding to a manifold in
image space'. This is illustrated in figure 2.2.

The most obvious motivation for thinking of these image sets as geometric surfaces
is to discretely represent these surfaces in lookup tables. To do this. we discretize the
image space. and place a pointer to a moldel in each cell of the discrete space that
intersects the model's manifold. Then a new image will point us to a cell in image
space where we will find all the models that could produce that image.

The main advantages of this geometric approach are less tangible. however. It
allows us to visualize the matching problem in a concrete geometric form. particularly
as we are able to describe a moldel's images with very simple manifolds. Beyond
indexing, we may also use this approach to determine what can be inferred about the
3-D structure of a scene from one or more 2-D images of it. An image corresponds

to a point in image space, so if we know what manifolds include the point or points
corresponding to one or more images, we have a simple characterization of the set of
scenes that could produce them.

Our geometric approach also provides a straightforward generalization of the no-
tion of an invariant. An invariant is some property of an object that does not change
as the object undergoes transformations. Invariants have played a large role in math-

ematics. and in the late nineteenth century geometry began to be viewed as the study
of invariant properties of geometric objects. Invariants have played a significant role
in perceptual psychology and in machine vision, as we will describe later. For some
interesting objects and transformations, however. invariants do not exist. We will
show. for example. that for sets of 3-D features projected into a 2-D image. there are

no invariants. There has been no natural generalization of the notion of invariants

I Actually, it is not necessary that a model's images be represented by an n-dimensional manifold

in image space. For example, one can devise representations of an image in which the dimensionality
of a small neighborhood of images can vary from neighborhood to neighborhood. However, such
representations seem somewhat far-fetched, and so the assumption that a model produces a manifold
in image space does not seem too restrictive.
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Figure "2.2: Each image of "2-D points (on the left) corrsponds to a single point inl
image space. A model of 3-D points (on the right, lines are included with the model
for reference) corresponds to a manifold in this image space.

for exploring these situations. If we view invariants in vision geomnetrically, we may
consider them as represent at ions of images that map all of an object's images to a
single point, in image space. That is, the image space representation of a model's
image does not vary as the viewpoint from which we create the image does. When
viewed geometrically, invariants have a natural extension. If we cannot, represent an
object's images at a single point in image space, we ask for the lowest- dimensional
representation that is possible. We explore that. question in this chapter.

There are many different ways of representing an image, and each representation
will cause a model to produce a different kind of manifold in image space. There are
also different ways of modeling the imaging process, using different classes of trans-
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formations such as perspective l)rojection or orthograp~hic projection. The type of
projection used will deterinine which images a group of model features caui produce.

and hence to what manifold a model will correspond. So our goal is to find a repre-
sentation of images and a type of projection which will produce thie --best*' mapping
from groutps of model features to manifolds.

In discussing representations of a model's images. we ignore the possible effects
of sensing error on these images. Error is omnipresent. and if our indexing s'st (Ie

cannot take account of error it is worthless. However, error can be handled ini two
ways. We might represent all the images that a model could produce when both
changes in viewpoint and sensing error are considered. Then we would only have to
compare a novel image against this set of images to perform robust indexing. Instead.
we represent a model's error-free images only. Then. given a new image. we determine
all the images that could be error-free versions of our new image, and compare this
set of images to the error-free images the model could produce. So we ma. defer
considering the effects of error until chapter 4. when we discuss practical aspects of
implementing our Indexing system.

For a mapping to be good it should meet several criteria. First, it is most useful if
we can analytically determine the manifold that corresponds to each possible model
group. Second. we would like to describe models with manifolds of tile lowest possible

dimension. This will contribute to the conceptual clarity of our representation. It
will also make it easier to discretely represent our image space. In general. when
we discretize image space. the amount of storage space required to represent each
manifold will be exponential in the dimension of the manifold. For example. suppose
we discretize a finite. 3-D image space by dividing the space into cubes. \Ve can do
this by cutting each dimension of the space into d parts. producing dX cubes. A line
(-all pass through no more than 3d cubes, while a plane will pass through at least d"
cubes. Since we will use discretizations of image space to allow us to perform indexing
with table lookup. the dimensionalitv of models' manifolds and hence the number of
discrete cells they intersect is of great importance. Whilc a [arZu,, icpresentationl
might cause different models to have manifolds of different dimensions. we will only
judge a representation by the dimensionality of the highest-dimensional manifold it
produces.

Third. we would like a representation that produces no false positive and no false

negative correspondences. False negatives mean that a niodels manifold does not rep-
resent all the images that the model can produce. while false positives mean that some
images map to a model's manifold even though the model could not produce those
images. Some of these errors may be implicit in our choice of a projection transfor-
mation. For example. scaled orthographic projection only approximates perspective
projection. and so the set of images a model produces with scaled orthographic projec-
tion does not include all the images that the model could really produce. and includes
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some images the model could not produce. But in addition our rel)reentation of iil-
ages might Introduce sonie errors. \We niav choose a mapping whose domain is not
the entire set of images. For example. we cali imagine that Iy choosing a iiappingo
from images to image space that ignores a small inluber of itages we can reduce the

diniensionalitv of the iiatlfolds in iniage space. Models that produce these ihliages,
will then find that their manifolds (1o not full- represent thelel. Or if our mappin g

friom image to image space is mnany-to-one and it maps an image that a model coubd
produce and an image that model could not produce to t he sanie point in iniage space

this will cause a model's manifold to correspond to images t hat it Could hot produCe.

\\e wouil like to avoid these errors, and ill tihis chapter we will assuie that no such
errors are allowed except for those errors implicit in our choice of a transfoirmat iol.
In chapter 5 we will explore the trade-offs that might be achieved bY relaxing this
goal in favor of other goals.

Fourth. it will also be useful if our manifolds have a simple form. W'e fird it easiest
to reason about a mapping that takes groups of model features to linear manifolds.
Fifth. for a representation of ninages to be useful it should be continuous. That is.
in the limit, a small change in an image should result in onhl a small change iII
the location of the point in image space that corresponds to the image. Without this
condit ion. our represent at ion will be unstable when even small amounts of error occur
in sensing our image. Continuity is a very weak condition for an image representation
to meet, but it will turn out to be an important assumption that allows us to prove
that certain represent at ions cannot be obtained.

Sometimes we cal better meet these objectives by dividing our image space into
orthogonal subspaces. That is we represent an image with a set of parameters. and
use disjoint subsets of these parameters to form more than one image space. \We can
use this technique to represent a class of high dimensional manifolds more efficientl"
as the cross-product of lower dimensional manifolds.

There are a large range of questions we can ask about the best way to map a
model to image space. because the problem can vary in many ways. First. we cami
consider different transformations from model to image. Some transformations are
more accurate models of the image formation process. while others are more conve-
nient mathiematically. allowing us to derive more powerful results. In this chapter. we
consider four t ypes of projection: perspective projection. projective transformations.
scaled orthographic projection. and linear projection. Second. there are manv differ-
ent kinds of geometric features that we would like to consider as part of an object
model. In this chapter our most extensive results concern point features. We also
consider oriented point features, that is points that have one or more associated ori-
entation vectors. And we look at some non-rigid models, such as models that stretch
along a single axis. or models with parts that can rotate about an axis. Third. since
there is no representation that optimally satisfies all the goals described above, we
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Figure 2.3: Later in this chapter we show how to decompose image space into two
orthogonal parts. Each image corresponds to a point in each of these subspaces. Each
model corresponds to a line in each subspace.
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can explore different trade-offs. In particular, in chapter 5 we will consider the extent
to which a lower-dimensional representation may be achieved by allowing some false
positives or false negatives in our representation. In this chapter we determine the
lowest-dimensional representation we can get when no such compromises are allowed.

\\"e derive a number of lower bounds on the dinmensionality of the manifolds re-
quired to represent a model's images. WXe show that assuming scaled orthographic
projection. a 2-D manifold is required to represent these images for models consist-
ing either just of point features, or for models consisting of oriented points. These
bounds are independent of the image space that we use to represent a model's images.
as long as the choice of image space does not introduce errors into the representation.
Under perspective projection, a 3-D manifold is needed. \Ve also show that if an
object has rotational degrees of freedom this will increase the dimensionalitv of the
manifolds. An object with a single part that can rotate about an axis will produce
images that form a 3-D manifold, assuming scaled orthographic projection. Each
additional rotating part will add another dimension to the model's manifold. If we
think in terms of discretely representing these manifolds in a lookup table, we see
that even in the simplest case a good deal of space is required. and that this problem
becomes inherently more difficult to manage as our recognition task becomes more
complicated.

We then show that for an important case. we can achieve a much simpler result
by decomposing our image space into two orthogonal subspaces. We may represent
models consisting of rigid point features with pairs of 1-D manifolds in these two
spaces. as depicted in figure 2.3. Moreover, these manifolds are just lines. This is a
big improvement because the amount of space required to represent I-D manifolds
discretely is much less than the amount required to represent a 2-D manifold. But just
as significant is the fact that we achieve a very simple formulation of the problem of
matching a 2-D image to a 3-D scene. W\e translate this into the problem of matching
a point in a high-dimensional space to lines in this space. This provides us with a
conceptually simple geometric interpretation of the matcning problem, which leads
to many of the theoretical results discussed in chapters 3 and 5.

In considering the images that a model can produce, we assume that our model
consists of just isolated features. We therefore ignore the fact that a real object will
occlude some of its own features from some viewpoints, and we focus on the different
possible geometric configurations that model features may produce in an image. Work
on aspect graphs takes exacthl the opposite point of view. and determines which
collections of model features may be viewed unoccluded from a single viewpoint while
ignoring changes in the particular images that any given collection of features can
produce. Work on aspect graphs is therefore complementary to and orthogonal to
the work presented in this chapter. Some recent work on aspect graphs can be found
in Gigus. Canny and Seidel[45]. Kriegman and Ponce[69]. and Bowyer and Dyer[15].
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Figure 2.4: With perspective projection, lines connecting the model points and
corresponding image points all meet at a single focal point.

2.2 Projection Transformations

We consider four different kinds of projection transformations in this chapter. Of
these, perspective projection is the most realistic model of the way that cameras take
photographs, and of the way that images are projected onto the human eye. However,
for mathematical simplicity, we will use scaled orthographic projection as an approx-
imation to perspective projection. We will also use a linear transformation that is
even more convenient mathematically, and that we will show is a good approxima-
tion to the process of photographing an object and then viewing this photograph.
Similarly, a projective transformation captures the process of imaging a planar object
with perspective projection, then viewing the photograph. This section will describe
and compare these projection models, but see Horn[53] for further details on the first
two.

2.2.1 Perspective Projection
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To describe perspective projection, suppose that we have a focal point lying behind
an image plane. 3-D points in the world that are on the other side of the plane are
imaged. The place where a line from the focal point to a scene point intersects the
image plane indicates the location in the image where this scene point will appear.
Figure 2.4 illustrates this. We will make use of only this geometric description of
perspective projection. and will not need to model it mathematically.

We will only be considering the case where the focal length is considered one of
the variables of the projection. In that case, the transformation has seven degrees of
freedom because in addition to the focal length there are also six degrees of freedom
in the location of the object relative to the camera. Assuming that we do not know
the focal length is equivalent to assuming that we do not know the scale of the model
we are trying to recognize because the whole world may be scaled without altering
the picture. So if we want to characterize the set of images that a model of variable
size might pioduce, whether or not we know the camera's focal length we may assume
that the object size is fixed and the focal length is unknown.

2.2.2 Projective Transformations

We will also consider projective transformations of planar models. A projective trans-
formation consists of a series of perspective projections. That is, a planar model, rn,
can produce an image, i, if there exists some intermediate series of images, il, 12, .... *,

such that i1 is a perspective image of m, i2 is a perspective image of i1 ... , and i is a
perspective image of iN, as shown in figure 2.5. These images may be taken with any
focal length.

Geometers have long studied projective transformations, and there are many books
on the subject (see Tuller[102] for an introduction). Projective transformations are of
interest because they are related to perspective projection, and at the same time, they
form a group of transformations. Analytic formulations of projective transformations
are well known, but for our purposes the simple geometric definition given above will
suffice, along with a few facts that we will state later. Although we will not prove
this here, it follows from the analytic formulation of projective transformations that
they have eight degrees of freedom, and that, except in degenerate cases, there exists
a projective transformation that will map any four model points to any four image
points.

2.2.3 Scaled Orthographic Projection

Scaled orthographic projection provides a simple approximation to perspective pro-
jection. With this method, each scene point is projected orthogonally from the world
onto the image plane, as shown in Figure 2.6. The resulting image can then be scaled



2.2. PROJECTION TRANSFORMATIONS 41
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Figure 2.5: A projective transformation combines a series of perspective projections.
We must begin with a planar model.
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0 0.

Figure 2.6: With orthographic projection, parallel lines connect the 3-D model points
with the corresponding image points.
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arbitrarily, to account for the change in the perceived size of an object as its distance
varies. It is convenient to think of this projection as first viewing the object from any
point on a surrounding viewing sphere, projecting the object in parallel onto an image
plane that is tangent to the sphere at the viewpoint, and then arbitrarily scaling the
resulting image, and rotating and translating it in the plane. Orthographic projection
does not capture perspective distortion: for example 3-D parallel lines always project
to 2-D parallel lines, while in perspective projection parallel lines converge as they
recede from the viewer. However, orthographic projection is a perfect approximation
to perspective projection when every scene point is equally far from the focal point.
and is a good approximation as long as the relative depth of points in the scene is
not great compared to their distance from the viewer. Orthographic projection has
only six degrees of freedom, that is, an image depends only on the relative location
of the object with respect to the image plane.

To describe orthographic projection mathematically, we assume that the image
plane is the plane z = 0, and that the object is positioned arbitrarily, which is equiv-
alent to assuming that the object is fixed and that we view it from an arbitrary view-
point. To describe the image point produced by a 3-D scene point, p = (p, p", pz), we
assume that the point is arbitrarily rotated and translated in 3-D. and then projected
onto the image plane and scaled. We may describe rotation with the rotation matrix
R, translation with the vector t, and scaling with the scalar .s. Assume that:

( ril r12 r13

R = r 2 l r 22 r 23  t =

r 3 1 r 3 2 r 3 3  ( )
Multiplying R by a scene point is equivalent to applying a rigid rotation to that
point as long as each row of R has unit magnitude, and as long as these rows are
orthogonal. Projecting the rotated and translated model into the image is equivalent
to removing the model's z component. Let q = (q•, qy) be the image point produced
by p. We find:

i ) ( rll r 1 2 r 1 3  P ) + GtIy . r21 r22 r23 PY t

One reason that scaled orthographic projection is mathematically convenient is
that for planar models it is equivalent to a 2-D affine transformation. We express a
2-D affine transformation as an unconstrained 2x2 matrix along with a translation
vector. If our model is planar, we may assume that it lies in the plane s = 0. and
that each model point is expressed p = (p1 ,py). Then, letting:

A= (all a 12

ka2 1 a 2 2



44 CHAPTER 2. MINIMAL REPRESENTATIONS OF A MODEL S IMAGES

and letting v = (v•., v), when we view our model from any viewpoint, assuming
scaled orthographic projection, there exists some A and v such that:

( q;) =( a ll a ,, ( ) + ( (qy a21 a22 py 11 Y

for every model point, and for any A and v there exists some viewpoint of the planar
model that produces the same image as this affine transformation. See Huttenlocher
and Ullman[57] for discussion of this fact. This is very convenient, because in general
orthographic projection is not a linear transformation, due to the constraints that
the rotation matrix must meet. However, the fact that this projection is equivalent
to an affine transformation in the planar case means that in that case it is a linear
transformation.

2.2.4 Linear Transformations

To gain the advantages of linearity for 3-D models, we can generalize orthographic
projection by removing the constraints that make R a rotation matrix. That is, we
allow:

821 S22 S23

to be an arbitrary 3x2 matrix, u = (ux, uy) to be an arbitrary translation vector and
let:

l et:_-- 
S il S12 13 P Y u

qY S21 q22 S 2 3  Pz UY

This is more general than scaled orthographic projection, because any image that
can be created with a scaled orthographic projection can also be created with this
transformation. To see this, for any R, t and s that define a scaled orthographic
projection, we just let S = sR and let u = t, and we get an equivalent linear
transformation. The reverse is not true. In fact, the linear transformation has eight
degrees of freedom, while scaled orthographic projection has six degrees of freedom.
This means that when we describe the manifold of images that a model produces
with this linear transformation, we are describing a superset of the set of images the
model could produce with scaled orthographic projection.

Due to its mathematical simplicity, this transformation has been used for a number
of studies of object recognition and motion understanding (Lamdan and Wolfson[71],
Ullman and Basri[105], Koenderink and Van Doorn[651, Shashua[95], Cass[26],[27],
Breuel[19]). We now show a new result about this transformation, that it characterizes
the set of images that can be produced by a photograph of an object. We will use this
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result both to understand the transformation better, and to produce a new, useful
representation of this transformation.

Suppose we form an image of a 3-D model using scaled orthographic projection
and then view this 2-D image from a new viewpoint, modeling this second viewing
also as a scaled orthographic projection. Then this second projection is equivalent to
applying an affine transformation to the model's image, as we have explained above.

We now show that the set of images produced by such pairs of transformations is
equivalent to the set of images produced by a linear transformation of the model. To
show this, we must show that for any ;, A. R, t, v there exist S, u such that:

Sp + u = A(,sRp + t) + v

and similarly, that for any S, u there exist s, A, R, t, v so that this equality holds.
The first direction of this equivalence is shown by letting S = AsR while letting
u = At + v. To show the second direction of the equivalence, we can let v = u, t = 0
and s = 1. We must then show only that for any S there exist some A, R such that
AR = S. Let S 1 , S 2 stand for the top two rows of S and let R 1 , R 2 stand for the
top two rows of R. Also, let all, a12, a21 , a22 denote the elements of A. That is, let:

SR R) A all a12
S2 R2 a21 a22

Then:
AR= a11R1 +a12R2)

a21R 1 + a 2 2R 2

The condition, then, for finding A and R such that

AR= S(

is that we can choose R 1 and R 2 so that we can express both S1 and S2 as linear
combinations of R 1 and R 2. If we think of R 1 ,R 2 ,S 1 ,S 2 as points in a three-
dimensional space, then the origin, S1 , and S2 define a plane, so we may choose
R1 and R 2 to be any two orthonormal vectors in that plane. and they will span it.
So there will be some linear combination of the two R vectors equal to each of the
S vectors. We have shown that the set of images that can be formed by a linear
transformation is the same as the set that can be formed by scaled orthographic
projection followed by an affine transformation. In fact, this latter representation of
the projection is redundant, since both scaled orthographic projection and an affine
transformation allow for translation and rotation in the plane, and scaling. So we may
more simply think of this as orthographic projection from some point on the viewing
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sphere, followed by an affine transformation, folding all of the planar transformations
into the affine transformation.

This result suggests an hypothesis about the human ability to understand pho-
tographs. The fact that people have no difficulty in recognizing objects in photographs
is somewhat puzzling, because a photograph nf an object produces an image that the
object itself could never produce. Yet we hardly even notice the distortion that re-
sults when we view a photograph from a position that is different from that of the
camera that took the photograph. Figure 2.7 shows a photograph, and an affine
transformation of it, as an example.

Cutting[37] discusses this phenomenon at greater length. He suggests that peo-
ple rely heavily on projective invariants for image understanding, that is, on the
properties of a planar object that do not vary as the object is viewed from different
directions, assuming perspective projection. Such descriptions would be the same for
both a view of a planar object, and for a view of a photograph of the object. Cutting.
however, does not consider nonplanar objects. In this chapter, we show that con-
siderable mathematical convenience is gained by considering linear transformations
as a nrojection model from 3-D objects to 2-D images. We have just shown that a
side-effect of this model is that a characterization of an object's images will include
the images produced by photographs of the object. This suggests that human ability
to interpret photographs may result from the fact that considerable computational
simplicity is gained when one assumes that objects can also produce the images that
could really only come from their photographs.

2.2.5 Summary

We can see that there are a variety of transformations available for modeling the pro-
jection from a model to an image. While perspective projection is the most accurate,
scaled orthographic projection frequently provides a good approximation to it. Scaled
orthographic projection can also be much more convenient to work with mathemat-
ically, particularly when models are planar. The fact that it requires six degrees of
freedom, while perspective projection with an unknown focal length requires seven
degrees of freedom suggests that the set of images produced by scaled orthographic
projection will be smaller, making them easier to characterize at the potential cost
of missing some of the images that a model can produce.

We also see that even greater simplicity can be achieved by also considering the
images that a photograph of an object produces. In the case of scaled orthographic
projection this leads to a linear projection model. When we begin with a planar
model and project it repeatedly using perspective projection we have a projective
transformation. These have been studied extensively by mathematicians. In both
cases, we expand the set of images that we consider a model capable of producing to
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/

Figure 2.71: On top are edges describing a scene. Below, these edges after applying a
fairly arbitrary affine transformation. Although the edges appear somewhat distorted,
the objects in the scene are still recognizable. It is plausible that essentially the same
perceptual strategies are used to understand both images. We hypothesize that in
two images like these, the same image lines are grouped together, and the same basic
properties of these groups are matched to our internal representation of the telephone
in order to recognize it.
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achieve greater simplicity.
This section has largely been a review of material that is well described ill many

places in the computer vision literature. However. it is our contribution to show
that a linear projection model describes the images produced by a photograph of
a model, assuming scaled orthographic projection. This provides a more intuitive
understanding of the inwag.: produced with the linear projection model, which others
have previously used.

2.3 Minimal Representations

This section contains a variety of results about representations of a model's images,
but we can conveniently divide these results into two parts. First, in the case of a
linear transformation and models with 3-D point features, we show that each model
can be represented by a pair of lines in two orthogonal spaces. This result is really
the centerpiece of this thesis. It is used to derive a variety of theoretical results in
chapters 3 and 5, and it forms the basis of a useful indexing system. However, this is
not the best representation imaginable, and so we lead up to this result with a series
of negative results that show that representations that might be preferable are in fact
impossibl,- *o achieve.

Then we consider the case of oriented point features, that is point features that
have one or more directional vectors associated with them, and the case of articulated
objects. These types of models are of practical value, and they are also interesting
because they turn out to be fundamentally harder than the case of rigid point features.
These results will form the basis for negative bounds on the space compleity of
indexing, as well as for negative results about other approaches to recognition. As
objects grow more complex, we will see that existing approaches to recognition grow
inherently more complex.

2.3.1 Orthographic and Perspective Projection

Planar Models

We begin by reviewing existing methods of representing the images produced by
planar models when they are viewed from arbitrary 3-D positions. This discussion
will serve several ends. It will allow us to present a clearly optimal solution to the
image representation problem for an interesting special set of models. It will recast
some existing results in our more general framework. And it will allow us to introduce
some specific mathematical results that will be used later.

An optimal solution to the image representation problem may exist when an in-
variant description of models exists, and much is known about invariants of planar
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models from classical mathematics. Tuller[102] describes some of this work from a
mathematical perspective for the case of models consisting of planar points or liles.
For our purposes. we may define an invariant description as a function of the images
that, for any model. is constant for all images of that model.

To express this more formally, we will introduce some useful definitions and no-
tations. \We will !-t A.4 tand for the set of all possible models, where a model is a
particular group of features. The type of features should alw:ys be clear from con-
text. Sinilarly, I stands for the set of all comparable images, and T for the set of
all transformations. For example. for planar models under orthographic projection,
an element of T will be a particular affine transformation. So an element of 7 is a
function from MA to 1. We will use I. I, m as variables indicating elements of their
corresponding sets, and we will use pi to stand for a model feature, and qi to stand
for the corresponding image feature. So for example. ]-3t such that i = t(m)'" means
that i is a possible image of m.

Definition 2.1 f. a function on 11, is an invariant function if Vw E AMVtl.t 2 E
T,f(tl(n)) = .f(t2(m)).

That is, an invariant function produces the same value when applied to any image
of an object. It is a property of the model's images that does not vary as our viewpoint
varies. (This is the traditional mathematical definition of invariance, specialized to
our domain, with the assumption that we are only concerned with invariants of weight
0).

Definition 2.2 We call f a non-trivial invariant function if it is an invariant
function, and 3i11i 2 E 11,i1 # i2 such that f(il) : f(i 2).

That is, if f is not just a constant function.

Definition 2.3 WC call f a complete invariant function if, ViI, i2 E I. Vim E Al.
if f(il) = f(i 2) and if3t, E T such that i1 = ti(m) thcn 3t2 E T such that i.2 = t-2(m).

That is, not only do all images of a model have the same value for f, but any image
that has such a value for f must be a possible image of the model.

When an invariant function, f, exists, we can use it to define a representation
of images in which each model's manifold is a single point. Our image space is just
the range of f, that is, we let f be a mapping from images to image space. By
the definition of an invariant, all of a model's images are then mapped to the same
point in image space. If f is a complete invariant function that is continuous. then
it provides us with a perfect representation of images. In addition to meeting all our
other criteria, f will introduce no false positive errors, because only images that a
model could have produced will be mapped to that model's representation in image
space.
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Planar point models with scaled orthographic projection

\We begin by showing a complete invariant function for models consisting of planar
points when these models are viewed front arbitrary 3-D viewpoints with scaled or-
thographic projection. As we have noted, in this case projection may be modeled as
a 2-i) aftine transformation. This invariant is known from classical geonmetry, and has
been used for computer vision by Laindan. Schwartz and \Volfson[70]. Our discussion
of it is modeled on their presentation.

Suppose our model consists of at least four points: P1l P2, Pa, P4.. p*. Assuming
that the first three points are not collinear we may use theni to define a new coordinate
system for the plane. and represent the remaining points in this coordinate s'sten.
That is. we define the origin. o. and two axes u. v as:

O= pi U =P2 -Pl V = Pa - P1

Then we describe the i'th point with the affine coordinahs (o,, .,). These coordinates
(lescribe the vector from o to pi by its components in the directions u. v. That is:

pi- 0 = OiU + iv

Lemma 2.1 The set of aJfin( coordinates that d~scrib( an imayg art an invariant
fi, ntion.

Proof: Let the 2j-2 matrix A, and the 2-D vector t define an affine transformation.
and let o'. u', v', the transformed version of our original basis, define a new basis in
the transformed image. That is we let: (o', u'.v') = (ql, q2 -q1. q - q1). and thell
describe other transformed image points using this as a coordinate systeem. Then:

qi = Api +t

= A(o + u+ 3iv)+t

= A(pi + -i(P2 - PI) + -i(P3 - P1)) + t

= Api + ctA(p 2 - pi) + 3AA(p 3 - P) + t

= 0o+ oiUl + 31iV

So affine coordinates are not changed when the model is viewed from a new angle.
and constitute an invariant function.

Lemma 2.2 Giten any 3 non-collinear modrl points: (PlP2, P3) and any non-
collinear image points: (ql,q2.q3). there c.rists an affinf transformation that maps
the modti points to the corrfsponding image points.
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Proof: The equations:
qi = Api + t

give us six linear equations with six unknowns. The condition for these equations
having a solution is equivalent to the points not being collinear.

Theorem 2.3 Tht set of affi'ni coordinatc.i that describ( an image are a coinpkte
Ino1eal ant funf•tion.

Proof: This requires us to show that any image with the same affine coordinates
as a model could have been produced by that model. The image is fully described
by (ql. q2, q3,o 4 , 14..o, 3,4. We know from lemma 2.2 that the model could pro
duce an image with any three points q1. q2. q3. From lemnnma 2.1 the model's affine
coordinates are always preserved. Therefore, a model can produce any image that is
described by the same affine coordinates as the model. 0l

This result will be quite useful to us in future sections. It has also been used
extensively for the recognition of planar models. This was first done by Lamdan,
Schwartz and Wolfson[70J. T'heir system computes the affine coordinates of quadru-
ples of model points at compile time, and stores a pointer to each quadruple in a
2-D image space that represents (4,. 34). Then. at run time they perform matching
by computing the affine coordinates of an image quadruple, and then a simple table
lookup provides all model quadruples that could have produced this image quadru-
ple. They combine these lookups using a voting scheme that we will not describe
here. Affine coordinates are also considered for recognizing planar objects in: Lam-
dan and Wolfson[71], Costa, Haralick and Shapiro[34], and Grimson, Huttenlocher
and Jacobs[49].

Planar point models with perspective projection or projective transforma-
tions

In this section we will present a complete invariant representation of points under pro-
jective transformations. This means that the representation is not changed by a series
of perspective projections, so obviously this will also be an invariant representation
for perspective projection, although not a complete one.

We begin by describing the cross-ratio. This is a function of four collinear points
that is invariant under projective transformations. We will use it to build up a more
general invariant description of coplanar points.

Definition 2.4 Let A, B, C, D be four collinear points. Let IIABII denote the distance
bet uween A and B. Then the value:

IICBII

IIDBII
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is the cross-ratio of the four points.

An important theorem from projective geometry is:

Theorem 2.4 The cross ratio of four points is invariant under projectivm transfor-
niations.

We omit the proof of this theorem (see Tuller[1021, for example). However, we
note that this theorem depends on the fact that a projective transformation preserves
the collinearity of points

We now present an invariant representation of five general planar points. Call
these points: P1,P2, P3, P4,P5. Let Lij stand for the line that connects pi and pj.
Let p' be the point at the intersection of lines L 12 and L 34 . Let p' be the point at
the intersection of L 12 and L4,5. See figure 2.8. Suppose a projective transformation
maps each point Pi to a corresponding point qi. Note that because projective trans-
formations preserve collinearity, for any such transformation q, will still be at the
intersection of the line formed by q1 and q2, and the line formed by q3 and q4. A
similar statement holds for q2. Therefore, given our five initial points, we may com-
pute the cross-ratio of the points P1, P2, Pl, P•', and this cross-ratio will be invariant
unde- projective transformations. We will call this invariant -Y5. Similarly, we locate

p3 at the intersection of L13 and L 25 , and p' at the intersection of L 13 and L45, and
compute a second invariant from the cross-ratio of the points P1. P3, P3, P' 4 . We call
this invariant .5. Together, (15, .5) form a complete invariant description of the five
points, but we will not prove the completeness of the description here. We will call
these the projective coordinates of the fifth point.

To handle models with more than five points, we may substitute any i'th point
for the fifth point in the above calculations, and compute (7Y, i).

Other planar invariants

There has also been a good deal of work done on invariants of planar objects that are
more complicated than points. There are general, powerful mathematical tools for
deriving invariants of curves under transformations that form a. group. However, there
is not always a clear, computationally tractable means of determining these invariants-
So some work has focused on deriving useful invariants n specific situations. There
are also many practical problems that must be solved in order to use these invariants
in vi.iion. In particular, a real image must be turned into a mathematical object.
For example. we must find derivatives of an image curve, or approximate it with an
algebraic curve. Work has been done to understald and limit the effects of sensing
error on these processes. We do not wish to describe this work in detail here because
it is not directly relevant to what follows. Instead, we provide a brief overview so
that the interested reader will know where to fi.,d more detailed presentations.
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L455
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Figure 2.8: Points used to construct a projective invariant description.
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Cyganski and Orr[38] suggested the use of a new, affine-invariant curvature. Cy-
ganski, Orr, ('ott and Dodson[39] use this to match a model which is a closed curve
to its image by comparing a normalized graph of curvature versus length. In the
error free case the graph of the image curvature is always identical to the graph of
the model's curvature, except for 1-D shifting due to the fact that one does not have
a canonical starting point for the curve.

Van Gool, Kenpenaers and Oosterlinck[106] provide a synthesis of these curvature
invariants and the point invariants used by Lamdan, Schwartz and Wolfson. They
show how information about the position and derivatives of points on a curve may
be combined into a single invariant representation.

Weiss[111] suggests the use in machine vision of a large body of results concerning
projective invariants of plane curves. Since perspective projection and scaled ortho-
graphic projection are special cases of projective transformations, Weiss' discussion
applies to both cases. He provides a useful review of classical work on differential
invariants, that is invariants based on local properties of a curve such as derivatives.
and on algebraic invariants, that is, invariants of algebraic curves. Weiss also makes
many specific suggestions for applying this classical work to problems in visual object
recognition. This paper has played an influential role in bringing mathematical work
on invariants to the attention of computer vision researchers.

In a more recent paper, Weiss[112] has attempted to come to grips with the
practical problems of using invariants in the face of noise and occlusion. He provides
differential invariants that require taking the fourth derivative of a curve, compared
to the sixteen derivatives required by classical results. He then suggests methods for
robustly finding the fourth derivative of a curve in spite of image error.

Forsyth et al.[44] also provide a useful review of general mathematical methods for
finding invariants of planar curves. They then derive projective invariants of pairs of
conics and use these for object recognition. They also consider the problem of finding
invariant methods of approximating image curves with algebraic curves. Rothwell et

al.[92] describes some further application of these ideas.

Other applications of invariants to vision may be found in a recent collection,
edited by Mundv and Zisserman[85]. Cutting[37] provides a more general discussion
of invariants from the point of view of perceptual psychology.

A number of useful differential and algebraic invariants have been derived. There
are two main challenges to applying these invariants to machine vision. First of all, the
effects of error on these invariants are not generally well understood. There has been
some work on the stability of these invariants, showing that small amounts of error
have only a small effect on the invariant. But it is not understood how to precisely
characterize the effects of realistic image error on invariant representation.--. This is in
contrast to the case of planar points, where we know precisely how a bounded amount
of sensing error can effect our invariant description (see chapter 4).
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Invariants of local descriptors of curves use high-order derivatives, and so tend to
be particularly sensitive to error. However, invariants of more global curve descrip-
tions tend to be sensitive to occlusion. As a result, much of the work on invariants
assumes that these curves have been correctly segmented. To handle this problem.
work is needed either on segmenting curves, or on developing invariant descriptions
that are insensitive to occlusion. Essentially, one could say that work has proceeded
on curve indexing without much attention yet to the grouping problem.

3-D Point Models

Unfortunately, there are no invariants when models consist of arbitrary collections of
3-D points which are projected into 2-D images. That is. it is not possible to define
an image space in which each model is described by a single point. In tl,. -e dtion,
we determine what is the lowest possible dimension of manifolds in image space that
represent general 3-D point models, assuming that there are no false positive or false
negative errors (beyond any introduced by the projection model). In chapter 5 we
consider what happens when errors are introduced.

An alternative to this approach is the use of model based invariants. Weinshall[1 101
has shown that given a particular quadruple of 3-D point features, one may construct
a simple invariant function. Applying this function to a quadruple of image points
tells us whether they could be a scaled orthographic projection of the model points.
This function is an invariant for a restricted set of one model, and a set of such
functions may be combined to handle multiple models that do not share a common
image.

Scaled orthographic projection: Manifolds must be 2-D

Clemens and Jacobs[32] show that in the case of general 3-D models of point features
and scaled orthographic projection. models must be represented by a 2-D manifold
in any image space. In this section we will draw extensively on that discussion.
reworking it only slightly to fit our present context. Hence, this section should be
considered as joint work between the author and David Clemens.

First, we add a definition and prove a lemma that will be useful for nonplanar
models.

Definition 2.5 For nonplanar modfls, the first thrcf model points will defin( a plane.
IVe call this the model plane.

Lemma 2.5 Gien any nonplanar model, and any affine coordinates, (04, 34). there
is always a vie wing direction for which q4 (the image of the fourth model point) has
coordinates (04, .34) relatire to the first three imagc points.
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Viewing Direction

Image Plane Image-plane

Rotation

q4

p4 . • q

q1

pp3

S~~p2 /

Model Basis Plane
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Figure 2.9: The image points q1, q2, q3, and q4 are the projections of the model
points P1, P2, P3, and P4. The values of the image points depend on the pose of the
model relative to the image plane. In the viewing direction shown, s4 and P4 project
to the same image point. Note that q4 has the same affine coordinates as s4 .
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Model Group Index Image Group
Space Space Space

Figure 2.10: A model, in, can produce images i1.1 and i2.2, so its manifold must
include the points these images map to in image space, Xi,1 and X 2,2. Model 17 2.2
can also produce image 12,2, so its manifold also includes X2, 2. Since 71 2,2 could not
produce i1,1, its manifold must not include X1.1. Therefore, X1, 1 4 X 2,2, and rn's
manifold must include at least two points.

Proof: Let s4 be the point in the model plane that has affine coordinates (on, 34)

with respect to the first three model points (see figure 2.9). When we view the model
along a line joining P4 with s4 , both P4 and s4 will project to q4. Since the projection
of s4 will always have affine coordinates (04, 34), P4 will also have these coordinates
when looked at from this viewpoint. 0

We may now show:

Theorem 2.6 For any modfl. m. that has four nonplanar points, and any mapping
froom images to image space that does not introduce errors, in must correspond to a
2-D manifold in image space.

Proof: First we show that for any nonplanar model there must be a one-to-one
mapping from the points in the real plane to distinct points on the model's manifold.
We choose any three points in rn as basis points, that is as the points (Pl.P2,P3)
that will define the model plane and form an affine basis in it. We choose to denote
as P4 any other model point that is not in the model plane. Then let 0 be a variable
representing the viewing direction, i.e. a point on the unit viewing sphere. We may
let (04(0). 34(0)) stand for the affine coordinates of q4 (the projection of the fourth
model point) as a function of 0.

W\e will first show that m's manifold must contain at least two points in image
space, as illustrated in figure 2.10. Then we will generalize this to prove our theorem.
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By lemma 2.5, there exists some 01, such that 04(011) = 1 = 34(011). Let i(l.l)
stand for the entire projection of in when viewed from this orientation. That is, "(1.1)
is the way the model appears when viewed so that its fourth point has the affine
coordinates (1, 1). Let X(1,1) be the point in image space to which i(l1.) maps. Then
X(1.1) must be part of in's manifold in image space. by our assumption that the
manifolds must represent the models without error.

Let i(li) be a model in which all points are coplanar and equal to the points in
i(1.1). Then clearly in(1, 1 ) can also produce the image points i(1,l). This means that
X(1,1) must also be part of m(1,1)'s manifold.

Now there also exists a viewing direction. 022, for which the image of P4 will have
affine coordinates 04(022) = 2 = 34(022). as above. Let i(2,2) be the image that in
produces when viewed from this orientation. 1(2 .2 ) will map to the point X(2 ,2) in the
index space, and in's manifold must also include that point. Let Wf2 .2 ) be a planar
model that is identical to 1(2 .2 ). Then n1( 2 .2)'s manifold must also include X(2,2). Since
rn( 2,2) is a planar model, for any projection of 11( 2,2) its fourth point will have the
a/fine coordinates (2,2). But. in i(I 1 ), the fourth image point has the affine coordinates
(1, 1). By Lemma 2.1, there is no orientation for which fl( 2,2 ) can produce the image
I(1.3). If X(2.2) = X(1,1), then i(i1.) maps to model rn( 2,2)'s manifold, even though model
7n( 2.2) could not possibly have produced image i(1,1). So, by our assumption that our
mapping to image space introduces no errors, X(2,2) # X(1.1). That is, ni(1 3 ) and
M(.2.2) must have disjoint manifolds, while rn's manifold must include points in cach
manifold. Similarly, for any point in the plane, (i~j), we can create an image i,.j)
and a model m(i~j). i(ij) will map to point X(ij) in the image space, and nl(,j) and
m will each include X(ij) in their manifold. Also, similar reasoning will tell us that
X(ij) - X(i,,.,), unless i = 1' and j = j'. So, there is a one-to-one mapping from
points in the plane to distinct points in ni's manifold in image space. We notice a few
things about this proof. It applies equally well if 771 contains more than four points.
Also, it does not depend on any particular representation of images. Although we use
affine coordinates to describe an image, it is not assumed that this representation is
used to define our image space. Finally, we have not so far assumed that our mapping
from images to image space is continuous. If we make that additional assumption.
we may conclude that each nonplanar model's manifold is at least two-dimensional in
image space. This is due to a basic result in topology that any continuous, one-to-one
mapping must preserve dimensionality (see, for example, [114]). Since a slight change
in an image produces a slight change in its affine coordinates, we have a continuous
one-to-one mapping from the plane to a portion of each model's manifold. So these
manifolds must be at least 2-D.

In the course of the above proof, we have established the following lemma, which
will be of use later:
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Lemma 2.7 The dimensionality of a model's manifold in any error-free image space
is bounded below by the dinensionality of its manifold in affint spacer. w'hn scaled
orthographic projection is used.

This lemma states that if we consider the set of all collections of affine coordinates
that a model may produce in various images. the dimensionality of this set provides
a lower bound on a model's manifold in any image space. In the above proof. we
have shown that a model of rigid point features produces a 2-D manifold in the
space of possible affine coordinates, and used that to show that these models must
be represented by a 2-D manifold in any image space that does not introduce errors.
Later we will use this lemma in the case where a non-rigid object can produce a
greater than 2-D manifold of affine coordinates.

It is also true that:

Theorem 2.8 For 3-D models and scaled orthographic projection ther( is an image
space such that each model's manifold is no more than 2-D.

This is accomplished by representing each image in anv way that is invariant
with scale, and rotation and translation in the plane. In that case, there is a direct
correspondence between points on a unit viewing sphere and images of the model that
map to different points in image space. So it is not hard to show our theorem using
such a representation. A more careful proof is given in Clemens and Jacobs[32].

Perspective Projection

We may now show an analogous result for perspective projection. The reader should
note that at no point in this section do we make use of the focal length of the projec-
tion. These results apply equally well whether or not the camera geometry, including
focal length, is known or unknown. We show that any error-free mapping must take
a model's images to at least a 3-D manifold in image space. This is of interest be-
cause it shows that the problem of indexing models under perspective projection is
fundamentally more difficult than it is under scaled orthographic projection. This
also suggests why it may be difficult to extend the results we will present in section
2.3.2 to the case of perspective projection.

Many of the same techniques may be used for this proof as were used in the case
of scaled orthographic projection. With perspective projection, we may describe an
image using the location of its first four points, and the projective coordinates of
the remaining points with respect to these four points. In the case of orthographic
projection we showed that, when viewed from all directions, a model could produce
a 2-D set of affine coordinates. That is, the model could produce any values for
(a4, 34). And we showed that two images with different affine coordinates would have
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to map to distinct points ill image space. T lhe same reasoning shows that in the case
of perspective projection. any two images with different projective coordinates must
map to different points in image space, and we need not repeat that argument here.
It remains to characterize the set of projective coordinates that a 3-D model might
produce when viewed from different directions.

We consider a model with at least six points, (P1, P2. P3. P4, P5- P6). We again
refer to the plane formed by the first three points as the model plane. We will also
ignore some degenerate cases. For example. we assume that the lines connecting
P4, p5 and P6 are not parallel to the model plane. and that none of these three points
lie in the model plane.

Since the model has six points, images of it will have four projective coordinates.
, {5 ", {. IIn Appendix A we show that any model can produce any set of va-lues

for three of the projective invariants that describe the model's images. However. this
derivation requires some simple tools from analytic projective geometry, and is not
self-contained. So in this section we will use a geometric argument to show that for
any model, and for any values of "ys and ý.5, there will be an image of the model that has
those projective coordinates. We will then show that for any pair of -)5. {s coordinates
there will also be a range of values that 16 can have. This is sufficient to show that a
model's images map to a 3-D surface in the space of projective coordinates. And the
geometric derivation may provide some useful insight into the problem.

We now define three special points on the model plane. For a fixed focal point. fC
the viewing lines connecting f to P4, P5 and p6 intersect the model plane at points
that we will call s4 , sS and S6 respectively. As with scaled orthographic projection,
our task now is to determine the set of projective coordinates that can be produced
by the coplanar points: P1,P2, p3, s 4 , ss.s 6. This is exactly the set of projective
coordinates produced by images of the model. Our strategy will be to first provide a
geometric description of the possible locations of S4 -S5 and s6 ii the model plane. We
will use this to show that the projective coordinates (1.5, .5) can take on any values.
We also show that the value of ý.5 is independent of the values of 1,5 and '1. Then we
consider the possible pairs of values that can occur for (h5, ý). We show that this set
of values is a 2-D portion of the - space. Since for any allowable pair of (J- )
values we can get any value for ý.5, this tells us that, the set of projective coordinates
a inodel can produce forms at least a 3-D manifold in the space of possible projective
coordinates (projective space).

First, we note that. S4 can appear anywhere in the model plane. A line connecting
aiyv point on the model plane with P 4 determines a set of possible locations for f
which will place S4 at that point on the model plane. We now define i wo new special
points which will help us to determine the compatible locations of s4 . s5 and S6. P4
and p5 determine a line. We will call the point at which this line intersects the model
plane r 5 . Similarly, let r6 stand for the point where the line connecting P4 and P6
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opl

r6
.Pp2

Figure 2.11: On the left, we show the points that lie on the model plane. We
illustrate the constraints that S4, si and ri must be collinear. On the right, we show
the relationship between these points and the related model points, demonstrating
why these collinearity constraints must hold.
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intersects the model plane. Note that r5 and r6 are intrinsic characteristics of the
model that do not depend on the viewpoint. The layout is illustrated in figure 2.11.

The three points f. P4 and p5 form a plane. which we will call 1-. s4 and s5 are
in V5. since they are on the lines connecting f to P4 and p5. The intersection of I "
and the model plane is then the line connecting S4 and s5. ('all this line v.5 Since
the line connecting P4 and p5 is in V5, this means that r 5 is also in 1;. Since r5 is
defined to be in the model plane, this means that r5 is also on v5. Therefore, once
we specify the location of S4, we have also specified a simple geometric constraint oil
the location of s5: we know that it must lie on the line determined by S4 and r5.

Furthermore, s 5 can fall anywhere on this line. To see this, we suppose that
S4 and s5 are anywhere in the model plane, subject to the constraint that they be
collinear with r 5 , and then determine a focal point such that the lines from the focal
point to P4 and p5 includes S4 and s5. From our assumptions, there is a single line
that contains S4, s5 and r5, and another line that connects P4, p5 and r5. and so
together, these five points lie in a single plane. This plane will also include the line
that connects s4 and P4. and the line that connects s5 and ps. Therefore, these two
lines either intersect, or are parallel (intersect at infinity), they cannot be skewed. If
they intersect, their point of intersection provides a focal point from which P4 and
s4 project to the same place in the image, and similarly for p5 and ss. If the lines
are parallel. then assuming a focal point at infinity, in the direction from s4 to P4,
pioducc, the apprupriate projection. We have therefore shown that the images that
the model produces can be described by saying that s4 may be anywhere in the model
plane, and that s5 can be anywhere on the line connecting r 5 and S4. Similarly. once
we know the location of S4 we know that S6 can lie anywhere on the line connecting
S4 and r6.

We now show that for any model, and for any values of (1.5, W, there exists a
viewpoint from which the model's image has those projective coordinates. To do
this we do not need to explicitly discuss the viewpoint, but only the locations of

P1,P2,P3,s4 and s8, since the invariant values that these points produce in the
model plane will be preserved in the image. First, we note that the value of 1.5 is fully
determined by the location of S4. To see this, recall that -15 is a cross ratio based on
four points. Two of these points. pl and P2 are independent of the viewpoint. A
third point, p'1 . depends on the intersection of the line formed by pl and P2 with the
line formed by P3 and S4, which is determined by the location of S4. And the fourth
point is dependent on the line formed by S4 and s5. However, since this is also the
line formed by S4 and rs. this line is also determined by the geometry of the model
and the location of S4.

This has two implications. We note that if one of the points used to compute a
cross-ratio varies along all the points of the line while the other three points remain
fixed, then all possible values of the cross-ratio will occur. Now first, suppose we
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want to produce a particular value of 1,. WVe may choose any values of" p' and p'
that produce this cross ratio. Then the intersection of the line from p' to r5 with
the line connecting p' and P3 will provide us with a location of s4 that will produce
this value of 1.5. Second, note that once we have fixed s4 , three of the points used
to compute the cross-ratio ý5 are fixed. The remaining point is the intersection of
the line from s5 to P2 with the line connecting pi and P3. As s5 varies along the
line connecting r 5 and s4 . this intersection point can appear anywhere on the line
connecting Pi and P2. Therefore, ý.5 may take on any value. Together we see that
we may choose s 4 and s5 to produce any pair of values for ( .5).

Wk.e conjecture that any model may also produce any values for (1s. 1/6). and there-
fore, any values for (1, ý5, 16), since the values of •5 that can appear in an image are
independent of the values for any -1i (which all depend only on the location of s4 ).
However, we have not found a simple way of proving this. Furthermore, our primary
goal in this section is to show a weaker result, that a model's images form a 3-D
manifold in projective space. We show that now. As we have noted. it remains only
to show that a model's images fill up a 2-D portion of -)-'1 space.

Suppose that S4 varies along a line that includes r 5 and P3. but not r 6 . Then all
the points used to calculate 5 will remain fixed, and in fact 1.5 will always equal 1.
However, as S4 varies along this line, so will the line connecting s4 and r6, and so J'
will assume all possible values. We may therefore easily choose two unequal values.
cl and c2, such that our model can produce an image with any pair of projective
coordinates (h., 16) such that 1,5 = I and ce _< y < c2 . Our choice of cl and c2 gives
us a segment of the line connecting r5 and P3. As s4 varies along this line segment.
values of -16 between c1 and c2 are produced.

Now we choose another line segment pai'allel to this one, and approaching it very
closely. We consider the values of ",s and -16 that are produced as the second line
segment approaches the first one. A range of values of 35 are produced. but this
range collapses down to I as the line segments converge. The range of values for -1,

converge to the range of values from cl to c.2. Therefore, for any small bc we can find a
6g that is small enough that as the line segments get close and -.5 is always within 6g
of 1, then ý6 takes on all values between cl + 6c and c2 - 6c. That is. we have defined
a small rectangle of possible locations for s4 such that, as s4 varies among locations
in that rectangle. . and -"6 take on all pairs of values within a small rectangle of
possible values. This shows that a model can produce a 2-D manifold of values for
the parameters (-5, 16), and so a 3-D manifold of values for the parameters (h5. ••, ).

This demonstrates that indexing with perspective projection will inevitably require us
to represent a higher-dimensional surface than will indexing with scaled orthographic
projection.

'We also note that the projective coordinates that a model produces will be no more
than a :3-D manifold. In general, knowing the values of 15 and -6 fixes the location
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of s4 , and hence of other -I values, while knowing the value of ý5 will determine the
location of the focal point.

2.3.2 Linear Projection

We now turn to the images produced by 3-D point models with a linear projection
model. We will see that, as with orthographic projection, we still need 2-D manifolds
to represent these images in a single image space. BL, these manifolds may be de-
composed into two 1-D manifolds in two image subspaces. And all of these manifolds
are linear, and easily determined by analytic means. This result, which was first
presented in Jacobs[62], essentially reduces the indexing problem to one of matching
points to 1-D lines. Short of a zero-dimensional representation of models' images,
this is the best for which we could hope.

To show this result, we will use the affine invariant representation of images intro-
duced in section 2.3.1. We describe each image with the parameters: (o. u, v. 0 4 , 34, ... o,,, 3,,)
denoting an affine coordinate frame and then the image's affine coordinates.

The first three of these parameters provide no information about the model that
produced an image, and so we may ignore them. To see this, suppose that we view our
model, m. with a scaled orthographic transformation which we will call V. followed
by an affine transformation we will call A, producing the image. i. That is:

AVm =I

= (o, u. v. o 4,/34 . ..

Then, for any values of (o', u', v'). we want to show that rn may produce the image
with parameters: (o', U', v',o 4 , 34. .... n3, ). We know from lemma 2.2 that there is
an affine transformation, A' that maps (o. u, v) to (o'. u', v') (except for the degen-
erate case of collinearity). and from lemma 2.1 that this will leave the image's affine
coordinates unchanged. Therefore,

=' (o',u'.v.ciV, 4, 4...o.3O, ~)

= A'AVm

Since affine transformations form a group, we can combine A and A' into a single
affine transformation. This means that there is a linear projection of rn that produces
image i'. We may therefore ignore the parameters (o, u, v) in describing the images
that a model can produce, since we know that these may take on any values.

We may also now ignore the affine transformation portion of the projection, be-
cause this has no effect on the remaining, affine-invariant image parameters. \Ve have
therefore shown:
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Lemma 2.9 To dtscribe thI imagfs that a modtl produces with linuar projections, uw(
need only consider the affint coordinates produced in images as thf model is ni-, wed
from each point on tht 'ie wing sphere.

Tile remaining inmage parameters form an image space that we will call affine space.
An image with n ordered points is mapped into a point in a 2( n - 3)-dimensional
affine space by finding the affine coordinates of the image points, using the first three
as a basis. We divide the affine space into two orthogonal subspaces, an o-spact.
and a 3-space. The n-space is the set of a coordinates describing the image. and the
3-space is defined similarly. The affine space is then equal to the cross product of the
0-space and the 3-space. and each image corresponds to a point in each of these two
spaces. We now show that the images of any model map to the cross product of lines
in o-space and 3-space.

We know from lemma 2.5 that a model can produce an image containing any
valu--s for (a4, 34). We now express the remaining affine coordinates of an image as
a function of these values and of a model's properties. Figure 2.12 shows a view of
the five points (PI. P2, P3, P4, Pj)- We will consider degenerate cases later. but for
now we assume that no three points are collinear. and no four points are coplanar.
First we define two new points in the model plane. Let p' be the ioint in the model
plane that is the perpendicular projection of P4. That is, the line from p'4 t-o P4
is orthogonal to the model plane. Since p' is in the model plane. we can describe
it, with affine coordinates, using the first three model points as an affine coordinate
system. We call the affine coordinates of p': (a 4, b4). Similarly. we define p' to be the
point in the model plane perpendicularly below pj' with affine coordinates (a,A b,).
Let us assume that from the current viewpoint, the fourth image point. q4, has affine
coordinates (04, 34). and so does the point in the model plane s4 . That is, tile viewing
direction is on a line through s4 , P4. and q4. Then a parallel line connects pj with
its image point, qj. We will call the point where this line passes through the model
plane: sj. We will call the affine coordinates of sj in the model plane: (0,. 3j). So
from the viewpoint depicted in figure 2.12 the model's image has affine coordinates
(04,34) and (oj,3j)

We now relate these coordinates. The triangle p4 p'4S4 will be similar to the
triangle pjp'sj, because the lines p4S4 and pjsj are parallel viewing lines. and the
lines P4P4 and pjp are both orthogonal to the model plane. If we let rj be the ratio
of the height of P4 above the model plane to the height of pj above the model plane.
than r9 is the scale factor between the two triangles. So: (S4 - P') = r,(s, - pj), and
therefore:

((04, 34) - (a 4 , b4 ))
(as, 3j) = (aj. bj) + (2.1)

ri
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Viewing Direction

SIm 
age Plane Im age-plane

Rotation
.. •4q4

p4 iq
s4

p3

.-i q3

Model Plane
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Figure 2.12: The image points q1, q2, q3, q4, and qj are the projections of the model
points P1. P2, P3, P4, and pj, before the affine transform portion of the projection
is applied. The values of the image points depend on the pose of the model relative
to the image plane. In the viewing direction shown, s 4 and P4 project to the same
image point. p' is in the model plane, directly below P4. Note that q4 has the same

affine coordinates as S4.
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This equation describes all image parameters that these five points may produce.
For any image, this equation will hold. And for any values described by the equation,
there is a corresponding image that the model may produce. since, from Lemma 2.5
we know that for any values (04- 34). there is a view of P4 that produces these values.
A model produces a series of these equations. which, taken together. describe a 2-D
plane in affine space.

Taking the a component of these equations, we get the system of equations:

05(4 
-a4)
1"5

(04 - a4)
an -- an + -

Since the values: a4 ... , an and r 4 . . rn are constant characteristics of the model.
these are linear equations that describe a line in 0-space. Similarly, we get:

(35 b+ 4- b4)

r 5

i = bn+
7'n

These equations are independent. That is, for any set of a coordinates that a model
may produce in an image, it may still produce any feasible set of 3 coordinates.

Notice that for any line in a-space, there is some model whose images are described
by that line. It is not true that there is a model corresponding to any pair of lines in
a-space and 3-space because the parameters rj are the same in the equations for the
two lines. This means that the two lines are constrained to have the same directional
vector, but they are not further constrained.

There are also degenerate cases in which this derivation does not hold. If some
of the model points are coplanar, than some of the r are infinite, and the lines
are vertical in those dimensions. If all the model points are coplanar, the affine
coordinates of the projected model points are invariant., and each model is represented
by a point in affine space. If the first three model points are collinear, then the lines
are undefined.

This is the lowest-dimensional complete representation possible of a model's im-
ages, assuming a linear projection transformation. The same proof used in the scaled
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orthographic case shows that a continuous 2-D manifold must be represented in the
linear case. And it is not possible to decompose such a surface into the cross-product
of zero-dimensional manifolds. So any complete representation must involve at least
the cross-product of two 1-D manifolds.

2.3.3 Linear Projections of More Complex Models

We now consider two ways of making our models more complex: one in which point
features have one or more directional vectors attached to them, a second in which
objects have rotational degrees of freedom. These are important generalizations. A
number of recognition systems use oriented point features, and many real objects
have rotational degrees of freedom. It is also valuable for us to consider new kinds
of models in order to get an idea of how well the results we have developed might
extend to more challenging domains. We will see that it is possible to analytically
characterize the images produced by models with oriented points. However we will
also see that our most valuable results do not extend to this case. Models of oriented
points map to 2-D hyperboloids in image space. We prove that these hyperboloids
may not be decomposed into pairs of 1-D manifolds as we have done before. This
places a quadratic bound on the space required to index oriented points using our
straightforward, index table approach. Then we show that as rotational degrees
of freedom are added to a model of point features, the dimensionality of a model's
manifold grows. We show that this dimensionality cannot be reduced even by allowing
false positive matches. These results tell us that the indexing problem becomes
inherently much more difficult as we consider more complex, realistic objects.

3-D Oriented Point Models

The manifolds are hyperboloids

By an oriented point we mean a point with one or more directional vectors attached to
it. For example, we might detect corners in an image for which we know not only the
location of the corner, but also the directions of the two or three lines that intersect
to form the corner. Alternately, we might distinguish special points on curves such
as curvature discontinuities or extrema, and make a feature from the location of that
point combined with the curve tangent. These two situations are illustrated in figure
2.13. In both cases we can consider our model as having 3-D vectors of unknown
magnitude associated with each 3-D point. We then consider our image as containing
the 3-D projections of these features.

Oriented points have been used in a variety of recognition systems. For example,
Thompson and Mundy[100], Huttenlocher and Ullman[57], Bolles and Cain[13], and
Tucker, Feynman and Fritzsche[101] use vertices as features. Other systems have used
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Figure 2.13: This figure shows simple examples of images with three oriented points
each. Above, the points are vertices, shown as circles. For each point, we know
two directional vectors from the lines that formed the vertex. Below, we assume
that we can locate some distinguished points along the boundary of a curve, and can
determine the tangent vector of the curve at those points.
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PP

Figure 2.14: The three points shown are used as an affine basis, and the slopes of
the vectors are found in this coordinate system.

points and tangents to characterize curves, such as Asada and Brady[l], Marimont[76],
Mokhtarian and Mackworth[82], Cass[261,[271, and Breuel[201. These features are
valuable because they are local and powerful. It doesn't take too much of the image
to reliably locate a point and its orientation, but this feature provides us with more
information than a point feature alone.

We now derive the manifolds in image space that describe such models' images.
To do this, we first extend our affine invariant representation to handle oriented
points. Then we show that using this representation, each model corresponds to a
2-1D manifold in image space that is a hyperboloid when we consider three dimensions
of the image space.

To simplify our representation, we assume that each model contains at least three
oriented points. We then use the images of these three points to define an affine
basis as we did before, and describe the points' orientation vectors using this basis.
Our image consists of points with associated vectors. The location of these vectors
is irrelevant, so without loss of generality we may locate them all at the origin (see
figure 2.14). We describe any additional image points using their affine coordinates,
and we describe each orientation vector by its affine slope.

Definition 2.6 To find the affine slope of a vector at the origin, we just take the
affine coordinates (a, 03) of any point in the direction of the vector, and compute -.

It is easily seen from the properties of affine representations that the affine slope
of a vector is well defined and is invariant under affine transformations. This repre-
sentation of vectors is equivalent to an affine invariant representation derived by Van
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Cool et al.[106] using different methods. We use affine slope to define a new image
space that combines point and vector information. We describe an image with the
affine coordinates of any points beyond the first three. (04. ,34 ... o,•. 3, ). and with the
affine slopes of all vectors, which we will call (00,.... 0,,). Together these values pro-
duce an affint slop( spacf. As before, the problem of determining a model's manifold
becomes one of determining the set of affine-invariant values it may produce when
viewed from all points on the viewing sphere.

We solve this problem using the following strategy. First we introduce some
special point features, called ri, that are related to the vectors that we really need
to consider. We then determine the manifolds produced by the combination of these
new points and the points in the model. Since we have only point features to deal
with. this manifold can be represented as a simple pair of lines in some o and :3
spaces. We then use these manifolds to determine the manifolds in affine slope space
that represent oulr atual model.

We begin by introducing some special 3-D points. With every vector. vi, we asso-
ciate some point, ri that is in the direction vi from the origin. We denote the points of
the model by Pi. We will describe images of the points (P1, P2, P3, P4 ... pu., ro....Frm)
by the affine coordinates: (a', ... aP, ) and (3. .... 3,n,). Now we may
use our previous results to describe these images using lines in these a and 3 spaces.
We will call these lines A and B respectively.

We can describe A with a parameterized equation of the form:

A=a+kw

a is any point in a space on the line A. We denote the coordinates of a as: (ap, ap. ....aP.
a', a', ... a'). w is a vector in a space that expresses the direction of A, and we denote
its coordinates as: (,WP .... wp, wr, ... U,). k is a variable. As k varies, we get the points
on the line A. Similarly, we let:

B=b+cw

Note that w is the same in both equations, because A and B must have the same
directional vector.

However, in practice we cannot know the images of the points ri. The vectors
that we detect in the image will provide us only with the direction to the ri points'
images, not their actual location. So A and B are not directly useful, we must use
them to determine the affine slopes that can occur in an image. To do this. we note
that if the pi and ri points together can produce an image with affine coordinates:
a4 ,4 o3....aP. i3P. a',3,...a, ), then the pi points and the vi vectors can produce

an image that is described in affine slope space as: (ap, •34 ....aOP, "

We will now derive a set of equations that describe a model's manifold in the
affine slope space (04, 34. ... a,. ,n, 00, ... , O,). These equations will express the set of
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affine coordinates and slopes that a model can produce as a function of 00,01. and
the characteristics of the model. We start with the equations:

3j = aj -- aj +ca

for anv' choice of k and c, and over all values of i and j. That is, we pick any set
of affine coordinates that can be produced by the model points and the constructed
ri points, and use these to determine affine coordinates and slopes that we could
actually find in the image.

We ignore the degenerate cases where ar and 4r are constant over the lengths of
the lines A and B. These are the cases in which the first model vector is coplanar
with the first three model points. Then we may choose for a and b those points on
.4 and B for which ar = 0 and bo = 0, This gives us the equation:

ar + kwr k00 0-0-br+ cwr c

This implies
k

C-- -
0o

We can use this to get:

a' + kwu01 -- I --

01(b0o + kW) a0o + kw0o

k(w'01 -1w;0) = aOo - bo001

k = Oo(ai-lb I)
wr(01 - 0o)

So we can express k and c in terms of the first two affine slopes we detect in the
image and properties of the model. This allows us to express each remaining image
parameter, both affine slopes and the a and /3 coordinates that describe other image
points, as a function of these first two affine slopes and properties of the model. We
find:

a3  = a3 + 'twjk

w'Oo(ar - 01br)
3 r(0, _ 00o)
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S= b,+ ,±pc

= b + j(a - b)
~'Wr?(O1 - 00)

ra + Uk

b6 + wrc

br + wl'8(a-O b')

aiw (O -_ 0o) + u'r0o(aj - 01br)
brwr(01 - 0o) + wvr(ar - 01br)

-brwiOo0 1 + (ar',W - aWr)Oo + aw,01
-brw'Oo + (brur - bruW)0 1 + arUjw

So we have an analytic form describing all images of the model. We now show in
the case of 3 points and 3 vectors that this form describes a 2-D hyperboloid in a 3-D
image space.

We introduce the following abbreviations:
r r

C1 = a, 2

= arWrC2 -- r 1

a2b.w
C3 = br r2

C4 = b2wI

x = 0 0

y = 1

=02

We note that cI, c2, c3 , c4 are properties of the model, and that models may be chosen
to produce any set of these values. So, the set of manifolds that can be produced is
precisely described by:

-c 3xy + (CI - C2 )X + c 2 y

-c 4X + (c4 - c3 )Y + cI

- C4Xr + (C 4 - c 3 )yz + C1-z + c3 xy - (C - C2 )X - c 2 y = 0 (2.2)

Adopting the notation of Korn and Korn (pp. 74-76)[68] we find:

1= 0
D = -2c 3c 4(c 4 - c3 )

A = (CLC4 - C2C3) 2 0
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Figure 2.15: A solution to equation 2.2 is an hyperboloid of one sheet, shown in this
figure.
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This tells us that when we look at three dimensions of afline slope space. we find
that a model's manifold is a hyperboloid of one sheet (see figure 2.15). \\e also see
that we call find a model corresponding to any hyperboloid that fits e(Juation 2.2.
For our purposes. we do not need to consider the degenerate cases in detail.

kXe have shown that the images of a model of oriented points can be described by
a 2-D manifold. We can see that at least a 2-D manifold is needed if we use a single
image space, with the same argument we used in section 2.3.1. To summarize this
argument, we can show that for any non-degenerate model there exists a viewpoint
which will produce any values for 00 and 01. At the same time. planar models produce
constant values of 00 and 01. Thus, every image of the model with different values of
00 and 01 must map to a different point in image space.

The manifolds cannot be decomposed

We now show that there is no way of dividing image space to decompose these mani-
folds into two l-D surfaces in two image subspaces. Our proof will assume that each
model contains at least three points, and three or more vectors. \We assume that anly
configuration of points and vectors is a possible model. We also assume a continuous
mapping from images to our image space. and to any image subsparces. We show
that if such a decomposition of image space exists, that this restricts the kinds of
intersections that can occur between manifolds, and that the class of manifolds pro-
duced by oriented point models do not meet these restrictions. By considering just
the intersections in image space that occur between manifolds of different models, we
get a result that will apply to any choice of image space, since the intersections of
manifolds reflect shared images that will map to the same place in any image space.

We will suppose the opposite of our proposition, that there exist two images
subspaces such that any model maps to a 1-D curve in each space. Then when two
manifolds intersect in image space, we can determine the places where they intersect
by taking the cross product of the intersections of their 1-D manifolds in the two
image subspaces. Suppose that two models* manifolds intersect in image space in a
1-D curve. Then our decomposition of image space must represent this curve as the
cross product of a 1-D curve in one image space, and a point in the second image
space. This means that in one of the two image subspaces, the two curves that
represent the two models must overlap, so that their intersection is also a curve and
not just a point.

This observation allows us to formulate a plan for deriving a contradiction. We
pick a model, M, with manifold H. We then choose a point P on H (that is. P
corresponds to an image of M). We define p and p' as the points that correspond to
P in the first and second image subspaces respectively. We will construct five new,
special models, M1 , AI2, M3 , A14 , M.5. Each of these model's manifolds will intersect H
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in a I-D curve in image space. We call these curves K1, K2, K3. A4. K,5. Each of these
curves will contain P. b1 construction. Then, since each curve maps to a curve in one
image subspace. and a point in the other. we may assume without loss of generality
that K1. K2, and K3 map to the curves kl, k2, and k3 in the first image subspace. and
to the points r., r2 and r3 in the second image subspace. Then, in order for the curves
h1 , K2. and K 3 to all include the point P. it must be that r1 = r2 = 73 = p'. and
that ki, k-2, and k3 all intersect at the point p in the first image subspace. We will call
the curve that represents Al in the first image subspace k. ki, k2. and k3 must all lie
on k because they come from the intersection of Al and other models. It is possible
that two of these curves intersect only at p if they end at p, and they occupy portions
of k on opposite sides of p. But with three curves, two at least (suppose they are k,
and k2 ) must intersect over some 1-D portion of k 2 Since they both intersect at
p' in the other image space, this will tell us that K, and K 2 intersect over some 1-D
portion of image space. We will then derive a contradiction by showing that in fact all
of the curves, K 1, K 2. K 3 , K4 , A5 , intersect each other only at a single point, P. So.
to summarize the steps needed to complete this proof, we will: construct the point
P and the models Al, Ml. A12,A113, 114, 11 so that each additional model's manifold
intersects Al's in a 1-D curve that includes P. We will then show that these curves
intersect each other only at P. that is, that M and any two of the other models have
only one common image.

For these constructions, we will choose our models to be identical and planar, ex-
cept for their first three orientation vectors. Therefore, in considering the intersection
of these models' manifolds, we need only consider their intersection in the coordinates
(00, 01,02), since their remaining coordinates will always be constant, and will be the
same for each model. Therefore, when we speak of a the coordinates of a point in
image space. we will only consider these three coordinates. And to describe the values
for (00, 01,02) that a model can produce, we need only give the values for c), c2.-c3 , c 4
that will describe the model's hyperboloid in (00, 01,02) space.

It is easy to see from equation 2.2 that. in general, any two of these hyperboloids
will intersect in a set of 1-D surfaces, and any three hyperboloids will intersect only
at points, and in the line 00 = 01 = 02, as noted above. Therefore, any general
set of six hyperboloids chosen to intersect at a. common point will fulfill our needed
construction.

2Actually, we are glossing over a somewhat subtle point. To prove that k, and k2 must intersect
over a 1-D portion of k requires the use of a theorem from topology which states that connectivity is
a topological property. Briefly, a 1-D curve is connected if there are no "holes" in it. For example,
the curve y = 0 is connected, but if we remove the point (x, y) = (0, 0), it is not. Since the set of
images that a model produces is connected in affine space. we can show that the curves k, and k2
must be connected, and from that we may show that. they must both contain the same 1-D region
on one side of p.
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We can also prove this result another way, which will perhaps strengthen the
reader's intuitions about these hyperboloids. Let H be a 3-D hyperboloid. and P be an
arbitrary point on it. \\e derive a cont radict ion after assuming t hat we can decompose
H into two I-D curves in two image subspaces. Suppose that P is represented again
by the two points p and p' in the two image subspaces. Choose an\ other point Q
on H. Referring to equation 2.2 we see that knowing two points of a hyperboloid
gives us two linear equations in the four unknowns that describe the hyperboloid.
Therefore, we may readily find a second hyperboloid, H', that also includes P and Q.
but that does not coincide with H. As noted above, in general H and H' intersect in
a I-D curve, which must correspond to a curve in one image space. and to either p
or p' in the other. In particular, this means that Q must correspond to either p or p'.
Since Q is an arbitrary point, all points on H must correspond to either p or p'. This
contradicts our assumption that H is represented by the cross-product of two curves.

Articulated Models

We now consider the manifolds produced by articulated objects. In particular, this
section will consider objects composed of point, features with rotational degrees of
freedom. We assume that an object consists of some parts. Each part has a set of
point features that are rigid relative to each other. However, there may be a fixed
3-D axis, about which a part may rotate. We assume this axis is defined by a 3-
D line, implying a single degree of freedom in the rotation. Since we cannot know
from a single image whether an object is articulated or rigid, we assume that any
representational scheme we consider must handle both rigid and nod-rigid objects.
We consider just rotations for simplicity, however it will be clear that our main results
will extend to a, variety of other object articulations.

Many real objects have rotational degrees of freedom. For example. when we
staple with a stapler, or when we open it to add staples, we are rotating a part of the
stapler about an axis. Similarly, a pair of scissors or a swivel chair have rotational
degrees of freedom, and much of the articulation in an animal's limbs can be modeled
as rotational degrees of freedom. So this is a practical case to consider.

It is also important to push our approach into a more challenging domain such
as this in order to see how far it can be taken. We find thai as the number of
rotational degrees of freedom of our model increases, so does the dimensionality of
our objects' manifolds. This tells us that figuring out how to index such complex
objects is not simply a matter of determining an object's manifold. Because of their
high dimensionality, significant challenges remain to uncover methods of efficiently
representing the relevant information that these manifolds convey.
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Figure 2.16: The simplest example of an interesting planar articulated object. The
fourth point rotates in a circle in the plane, as the other three points are fixed.

Planar models

We begin with the case of planar models with rotational degrees of freedom, such as
a pair of scissors. We assume in this case that even as the object rotates, all of its
points remain coplanar. in the simplest case, we have a base part of three points,
which we can consider rigid, and a rotating part that consists of just one point. This
rotating point is coplanar with the base points, but may rotate in a circle about any
point in the plane. This simple case is illustrated in figure 2.16.

We find the affine coordinates these four points may produce in an image by
rewriting the equation for a euclidean circle in the affine coordinate frame defined by
the base points. This is equivalent to transforming the model so that it's first three
points map to the points (0, 0), (1.0), (01) in the plane, and finding the equation for
the transformed circle. From elementary affine geometry we know that a applying an
affine transformation to a circle will produce an ellipse. So every object with rotations
maps to an ellipse in affine space while rigid objects continue to map to points.

If we allow more points in the base of the object, our model's images have more
parameters in affine space. These additional parameters are constant. If we add more
points to the rotating part, these points' affine coordinates each trace an ellipse in
affine space. Together, they map to a 1-D curve in affine space that is elliptical in
each component.

The same reasoning used above allows us to see that this is a bound on the
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dimensionalitv of the manifolds. .\gain. we maiy not compress together two points in
affine space without confusing two rigid objects. and so we niaY not compress these I-
D curves in affine space into points. This shows that there are no complete invariants
for rotating planar objects. In fact, we may show that the onhv invariants available for
such objects are the invariants that might be computed separately from the objects,
parts. It we do not know which points of the object belong to which parts, we may
not compute aniv invariants at all.

If we increase the number of rotating parts. the dimensionalitv of the manifolds
increases also. For example. when anl object has two rotating parts with one point
each, its images are described by an ellipse in (14-.4 space for the first point, and b1
an ellipse in 05- .. 5 space for the second point. Together these give us a 2-D manifold
in a 4-D affine space. As we allow additional rotational degrees of freedom ill our
model, the dimensionalitv of 'he model's manifold increase by one in a similar way.
In all these cases, we may de, onipose these manifolds into a series of 1-D manifolds.
one for each rotating part. as long as we can tell from the image which points come
from which parts.

Nonplanar Models

We now consider 3-D models with parts that have rotational degrees of freedom. We
begin by proving that a general 3-D object with two parts must be represented by
a 3-D manifold in image space. We then show that we can generalize this result ýo
show that an object with n parts must be represented by an n-D manifold.

We first suppose that an object has two parts. P1 and P-2 . Assume that P, contains
at least three points which we use to define the model plane, and whose projection
we will use as our affine basis. Assume also that P2 contains at least two points. Pl
and P2. and is allowed to rotate about some axis line that we will call L. We refer
to any particular rotation of P2 as a configuration of the model. \WVe first show that
for almost any object, there are two configurations of the object whose manifolds
intersect at most at a single point in affine space.

For any configuration of the model, its images will correspond to a plane in affine
space and to lines in n and 3 space. The slope of these lines will be the height of
pi above the model plane divided by the height of P2 above the model plane. If
the lines corresponding to two different configurations have different slopes in these
affine coordinates, then the lines of the configurations can intersect in at most a
single point. Suppose that P1, P2 and L are not all coplanar. Then as pl and P2
rotate about L, there will be a point at which pl is receding from the model plane.
while P2 is approaching the model planie. This means that the ratio of their heights
must, be changing, and so the slope of the lines corresponding to these configurations
will be changing. So we can readily find two model configurations whose manifolds
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correspond to lines with different slopes and intersect in at most a point in afine
space. Suppose now that pl. P2 and L are planar. Let r, be the distance from Pi
to L. and let r," be tile distance from P2 to L. As P1 rotates about L. the two points
are displaced in the same direction with a magnitude that depends on their distance
from L. So the change in pl s height above the model plane will be r1 /k and the
change of P2"s height will be r 2k, for some k. This means that the ratio of the two
heights will be held constant only when that ratio is •,. Again, if this ratio changes
then the model will have two configurations that produce at most one common set
of affine coordinates. So in general. the only case in which a rotating model does not
correspond to two separate planes in affine space is when the models second part is
completely planar with its axis of rotation, and the ratios of the heights of all tile

points in this part are equal to the ratios of their distance from the axis of rotation.
\Ve now show that except for this special case. a rotating model will correspond to

at least a 3-D manifold in affine space. \Ve know the model's manifold will include two
planes that intersect at only a point. We also kncw that intermediate configurations
of the model will correspond to a continuous series of planes. This continuous series
of planes will form a 3-1) manifold. We now have fr, a lemma 2.7:

Theorem 2.10 Excfpt in a .sp(cial dfg~nerath ca.f. a tnodcl u'ith a iotating part must
corrts.pond to a 3-D manifold in any frror-frfu itnagf spacu.

\We noie that this proof may be extended in a straightforward way to handle
additional parts. For example. if a model has three parts. we know that holding one
part rigid. the model produces a 3-D manifold in image space. W-e can then show
that rotating that part produces a second 3-D manifold that intersects this manifold
at most in a I-D manifold. Therefore. we see that as both parts rotate they produce
a 1-I) manifold. In general- a model with n rotating parts corresponds to an n-D
manifold in any image space.

Open Questions

There remain unanswered a numbler of interesting questions related to the ones we
ha\'e addressed in this chapter. \Vhile we have shown that the most space-efficient
wax of representing a 3-I) model's images p)roduced by a linear transformation is
withi 1-I) manifolds. we do not know whether 1-I) manifolds can describe a model's
images under tHie non-linear projection models. scaled orthographic projection and
tperspectiv'e projection. Such a decomposition of the non-linear manifolds would be
quite useful, because it would il low us to match a rigid object to an image using
an indexing system that requires essentially the same amount of space as the system
described in tihis tliesis. while also (list inguishing between an image of an object and an
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Table of Results
Model Projection Space Lower bound Analytic

lower bound when space description
divided of manifold

3-D Points Orthographic 2-D
Perspective 3-D
Linear 2-D P-D Linear

Oriented Orthographic 2-D 2-D
3-D Points Linear 2-D 2-D Hyperboloid
Points, with Orthographic (N+2)-D
N rotating Linear (N+2)-D
parts. __ _

Table 2.1: A summary of this chapter s results.

image of a photograph of the object. We also have not shown whether the manifolds
of non-rigid objects can be decomposed.

We have also presented a very simple representation of a model's images as a 2-D
plane, or a pair of lines, when our projection model is linear. Is it possible to represent
a model's images with a 2- or 3-D linear surface when the projection model is scaled
orthographic or perspective projection? If it is. reasoning about matching problems
under these projection models might be greatly simplified. Weinshall[l 10] has shown
interesting related results which from our point of view express a model's manifold
as a linear subspace when scaled orthographic projection is used. This subspace
is of a higher dimension than that which is needed to describe a model's manifold
non-linearly, however.

Finally. there is much work to be done in understanding the manifolds that rep-
resent the 2-D images of 3-D curves. We have characterized these manifolds when
the location of a point on a curve and the first derivative of the curve at that point
are known, but not when additional derivatives are known. nor when a polynomial
representation of an entire curve is known. WXe expect that these manifolds will be
2-I) when a linear transformation is used. but we do not have an analytic description
of them. and we do not know whether they might be decomposed.

2.4 Conclusions

In this chapter. we have explored the problem of finding the simplest representat ion
possible of a model's images under a variety of circumstances. In doing so we have
produced two kinds of results. which we summarize in table 2.1. On the one hand. we
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have derived simple, analytic descriptions of the set of images that models of point.
or oriented point features may produce under a linear transformation. On the other
hand, we have shown lower bounds on the manifolds that these and other models
produce under a variety of transformations. These two kinds of results serve two
different ends.

The first set of results are the most directly useful, and we explore their con-
sequences throughout much of the rest of this thesis. We have shown that we can
represent a 3-D point model's images as a pair of 1-D lines in two high-dimensional
spaces. This is especially useful for indexing, and a significant improvement on past
results. In chapter 4 we show how we can use it to build a practical indexing sys-
tem. We also show that even with this representation of a model's images, space is
at a premium. suggesting that indexing using a 2-D manifold to represent a model's
images is not. very practical.

We also show that a 3-D model consisting of oriented points may be represented by
a 2-D hyperboloid in a high-dimensional space. Both of these representations can help
us to understand other approaches to recognition and matching. They provide us with
a simple. geometric formulation of the matching problem as one of comparing points
in a high-dimensional space to manifolds for which we have an analytic description. In
chapters 3 and 5 we demonstrate some of the power of this formulation of the problem
by analyzing several different approaches to recognition and motion understanding.

We also demonstrate a variety of lower bounds on the space required to represent
a model's images. These bounds make two points. First, they show that the analytic
results that, we have derived are optimal. We need at least two I-D manifolds to
represent the images of a 3-D model of point features, and at least a 2-D manifold to
represent a model of oriented point features. Also, although our results are derived for
linear projections. we show that using scaled orthographic projection instead would
not reduce these space requirements. Our picture is not quite complete. however.
We know we cannot get better representations using scaled orthographic projection.
but perhaps we could derive representations that are just as good. This would be
useful since scaled orthographic projection is a more accurate model of the process of
forming a single image from a 3-D model. Except for this issue, though, we know that
for two interesting kinds of models we have derived the best possible representations
of their images.

Our lower bounds are also interesting because they tell us that some indexing
tasks are fundamentally more difficult than others. Images of oriented points must
be represented with a 2-D manifold that cannot be decomposed. while the manifold
produced by simple points can be constructed from manifolds that are only l-D. We
also see that indexing with perspective projection necessarily requires us to represent
a model b1 representing a 3-D manifold, while only a 2-D manifold is required for
scaled orthographic or linear projections. We do not know whether this :3-D manifold
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can be decomposed into smaller sub-manifolds. And we see that representing the
images of objects with rotational degrees of freedom inherently requires more and
more space as the number of rotational degrees of freedom grows. Even as we have
produced useful solutions to some indexing problems. we have shown that others may
become very difficult. We have a concrete method of characterizing the difficultY of
an indexing problem, and we have shown how hard some problems may be.

This chapter is also of interest because it demonstrates how one may generalize
the notion of an invariant. Invariant representations have attracted a great deal
of attention from mathematicians, psychologists. photogrammetrists and computer
vision researchers. For the situations of greatest interest, projection from 3-D to 2-D.
there are no invariant descriptions, however. We suggest that an invariant may be
thought of as a O-D representation of the set that results from transforming an object.
When invariants do not exist. it seems natural to generalize them by pursuing the
lowest dimensional representation that is possible. We have shown that interesting
tight bounds may be found when invariants do not exist.
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Chapter 3

Implications for Other
Representations

In this chapter we consider some results of others that are related to those presented
in chapter 2. This serves several purposes. We acknowledge the relationship of some
past work to our present results. Also, since our results are more powerful, we may
rederive some of these past results more simply, or at least in a different way. At the
same time, since this past work had applied only to point features, we may now see
what happens when we try to extend these results to oriented points.

3.1 Linear Combinations

3.1.1 Point Features

Ullman and Basri[1051 show that any image of a model of 3-D points can be expressed
as a linear combination of a small set of basis images of the object. That is, given a
few views of an object, il...in, and any new view, ij, we can find coefficients al..a, so
that:

n

ij = Z akik
k=1

where we multiply and sum images by just multiplying and summing the cartesian
coordinates of each point separately. This idea is refined independently by Basri and
by Poggio[89] into the following form.

Suppose we have a model, m. with n 3-D points. i1 and i2 are two images of m. We
describe each image with cartesian coordinates, and assume there is no translation in
the projection. Let xl be an n-dimensional vector containing all of iI's x coordinates,
and let y I be an n-dimensional vector of its y coordinates. Similarly, define x2 and

85
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Y2 for i2. Take any" new image of rn, 1J, and define xj and yj. Then Basri and Poggio
show that there exist a0 , a,, a2 and bo, bl. b2 such that:

xj = aOxl +alyl +a 2x2

yj =b0X + blyl + b2x 2

This tells us that the x and y coordinates of a new image are a linear combination
of one and a half views of the object, that is, of the x and y coordinates of one view,
and either the x or the y coordinates of a second view. Another way to think of this
result is that Xl, Y1, x2 span a 3-D linear subspace in R. * that includes all sets of xr or
y coordinates that the object could later produce. We omit a proof of this, but note
that the proof is based on a linear transformation. That is, when an arbitrary 3x2
transformation matrix is used instead of a rotation matrix, as described in section
2.2, then we can show that these 3-D linear subspaces precisely characterize the sets
of x and y coordinates that the model can produce.

We now show how a similar result is evident from our work. We have shown
that in the space formed by the affine basis and affine coordinates of an object,
(o, u, v,a 4,/34, ... a-n, )j,), each model's images lie in an 8-d linear subspace, that in-
cludes a plane in o-ý3 space, and any possible values for o, u, v. Similarly, when
translation is included, the linear combinations approach shows that a model's im-
ages form an 8-d linear subspace in cartesian coordinates, which is an equivalent
representation. The difference between the approaches is that we ignore the o, u. v
parameters, producing a 2-D linear subspace which may be factored into two l-D
linear subspaces. In the linear combinations approach, the 8-D subspace may be fac-
tored into two 4-D subspaces. Our approach also implies a result similar to the one
and a half views result described above. Given the a coordinates of any two views of
a model, we may determine the line in a space that describes all the a coordinates
the model might produce. In fact, any point on this line is a linear combination of
the original two points used to determine the line. And since the directions of the a
and 3 lines are the same, if we are given the a coordinates of two images of a model,
and the /3 coordinates of one image, we may also determine the line in 3 space that
describes the model.

The primary difference between our result and linear combinations, then, is the
dimensionality of the linear spaces we produce. This is in fact the crucial problem of
indexing; how can we most efficiently represcnt the images a model produces? The
linear combinations work does not address this problem because it is not concerned
with indexing. The linear combinations result is used rather for representing models
and reconstructing new views of these models.

In addition to the implications for indexing, there is also a significant gain in
conceptual clarity when we lower the dimensionality of our representation of images.



3.1. LINEAR COMBINATIONS 87

It is hard to formalize this, but it is often easier to visualize the matching problem
if we can talk in terms of matching points to lines instead of matching them to 3- or
4-D linear subspaces. And if we attempt to make use of tools fr-om computational
geometry in performing this matching, we can expect that the complexity of these
tools may well depend on the dimensionality of the objects we are matching.

3.1.2 Oriented Point Features

We now use results from chapter 2 to show that the linear combinations result can
not be extended to oriented points. To do this it \will be sufficient to consider the
case where each model consists of three points and three vectors. Recall that in this
case we may in general represent a model's images with a 2-D hyperboloid in a 3-D
space. It might seem obvious from this that the linear combinations idea will not
apply. Given a 2-D hyperboloid in a 3-D space. it is easy to pick four points on the
hyperboloid that span the entire 3-D space. This means that in general, any four
imagts of any model can be linearly combined to produce any possible image. and
the linear combinations idea is true only in the trivial sense that with enough images
we may express any other image as a linear combination of those images.

However, things are not this simple. Linear combinations might be true of one
representation of images, but not true of another. For example. with point features
the cartesian coordinates of one image are linear combinations of other images of
the same model, but this might not be true of polar coordinates. So we must prove
that all images of a model are not a linear combination of a small set of images,
regardless of our choice of representation for an image. Since we know that the three
basis points of the image convey no information about the model, the real question is
whether some alternate representation of affine slope might map each model's images
into a linear subspace. So we ask whether there is a, continuous, one-to-one mapping
from affine slope space, that is the space defined by (00i,01,02), into another space
which maps every hyperboloid in affine slope space into a linear subspace. From
elementary topology we know that any continuous one-to-one mapping will map our
3-D affine slope space into a space that is alsc 3-D, and that it will map every 2-D
hyperboloid into a 2-D surface. So the question is whether these hyperboloids might
map to 2-D planes in a 3-D space? That is, can we choose a different affine invariant
representation of orientation vectors so that a model's images form a 2-D plane in
the new space given by this representation?

To answer this, we must look at the particular set of hyperboloids that correspond
to possible models. We assume that, an appropriate mapping exists for linear combi-
nations, and derive a contradiction. First, we recall that the line 00 = 01 = 02 is part
of the equation for each hyperboloid corresponding to a possible model. Call this
line L. L is a degenerate case; the actual set of images a model produces does not
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include L. but it includes images that are arbitrarily close to L. Suppose we apply
a continuous one-to-one mapping, call if f, that takes one of these hyperboloids. H.
to a plane, f(H). Then f(L) is a I-D curve such that for any point on the curve.
there is a point on f(H) arbitrarily close to that curve point. This call only happen
if f(L) lies oil f(H). That is, we can omit f(L) from a model's manifold wit hout
problems, but we have shown that if this manifold is linear, then the requirement
that our representation be continuous tells us that f(L) must lie in this linear space.

Since L is part of every model's hyperboloid. this means the f(L) must be a 1-
D curve at which all models' manifolds intersect, in our new space. If all models'
manifolds are 2-D planes in this new space, they can only intersect in a line. So f(L)
must be a line at which all models' planes intersect. But this means that no models'
planes can intersect anywhere else in our new space. However, we have already shown
that in general all the hyperboloids that represent models intersect at other places
than the line L. f must preserve these intersections, so a contradiction is derived.

This tells us that it is never possible to represent the images produced by a model of
oriented points using linear combinations, except in the trivial sense.

The implications of this result, however, depend on what one thinks is important
about the linear combinations result. If it is the linearity of the images, then our
result concerning oriented points is a significant setback. It does seem that part of
the impact of the linear combinations work is that the linearity of a model's images
was unexpected and striking. And it is certainly true that linear spaces call lead
to simpler reasoning than non-linear ones. However, a large part of the importance
of the linear combinations work is that it provides a simple way of characterizing a
model's images in terms of a small number of images, without explicitly deriving :3-D
information about the model. And we may still do that with oriented points. Our
computations are no longer linear, but we may still derive a simple set of equations
from a few images of oriented points that characterize all other images that could be
produced by the model, without explicitly determining this model's 3-D structure.
We explore this further in the next section.

3.2 Affine Structure from Motion

3.2.1 Point Features

Koenderink and van Doorn[65] and Shashua[95] have also noted that two views of
an object can be used to predict additional views, and have applied this result to
motion understanding. Koenderink and van Doorn show that the affine structure
of an object made of 3-D points can be derived from two views, assuming scaled
orthographic projection. Affine structure is that part of the object's geometry that
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remains unchanged when we apply an arbitrary 3-D affine transformation to the
object's points. For example, given two views of five corresponding points, they
compute a 3-D affine invariant representation of the fifth point with respect to the
first four. Then, given the location of the first four points in a third image, the location
of the fifth point may be determined. This result is particularly significant because
it is known (rllhnan[103]) that three views of an object are needed to determine the
object's rigid structure when images are formed with scaled orthographic projection.

Our representation of a models' images as lines in o and 3 space is fundamentally
equivalent to Koenderink and van Doorn's 3-D affine invai*,,,lt representation of a
model. First, both representations factor out the effects of translation. Our repre-
sentation then considers the set of images that a model can produce when a general
3.r2 matrix is applied to the model points. Koenderink and van Doom assume that
the model may be transformed with a general 3,z3 matrix and then projected into the
image. Projection eliminates the effects of the bottom row of the matrix. Therefore
the set of images that a model can produce with our projection model is the same as
the set of images that a model can produce when it is transformed with a 3-D affine
transformation and then projected into an image with scaled orthographic projection.
The two methods represent, the same information, but Koenderink and van Doorn's
representation makes explicit what we know about an object's 3-D structure, while
we make explicit what we know about the images that a model can produce.

For this reason. it is easy for us to rederive Koenderink and van Doorn's appli-
cations of this result t~o motion, As we pointed out above, two views of an object
(actually. 11 views) suffice to determine the images that the object can produce.
Given the location of four points in a third view we may determine (04. 34) in this
view. These values can be used to determine the affine coordinates of all remaining
points, because they determine a single point on each line in 0 and 3 space.

3.2.2 Oriented Point Features

We may now consider what happens when we try to extend Koenderink and van
Doorn's result to oriented point features. We find that four views are needed to
determine the affine structure of some oriented points. We consider a model with
three points and three orientation vectors; larger models may be handled similarly.
From chapter 2 we know that for any hyperboloid if the following form:

-c 4.rz +- (c 4 - C3 )yz: + CeZ + C3 Xy - (Cl - C2 ).r - C2 y = 0

there is a model whose images are described by this hyperboloid, where x. y. : are
the affine slopes of the three image vectors, and cI, c2 , c3. c4 are parameters of the
model, which mav take on any values. Determining the affine structure of the model
is equivalent to finding the values of CI- c2 , c3, c4. If we do not know these values. we
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do not know the set of images that the model can produce and so we can not know
the model's affine structure.

Every image of the model gives us a single equation like the one above, which is
a linear equation in four variables. We need four independent equations to solve for
these variables, and hence we need at least four views of the object to find its afline
structure. Given three views of the object, there will still be an infinite number of
different hyperboloids that might produce those three images, but that would each
go on to produce a different set of images.

This result is easily extended to four or more oriented points. However, it only
takes three views to determine the rigid structure of four or more oriented points. To
compute this, we can first use the locations of the points in three views to determine
their 3-D location, as shown by Ullman[1031. This tells us the 3-D location of each
oriented point and each viewing direction. but not the 3-D direction of the orientation
vectors. A view of an orientation vector at a known 3-D location restricts that vector
to lie a plane. That is. the vector in the image gives us the .r and y. but not the :
coordinates of the unknown 3-D vector in the scene: and so all vectors that fit these ax
and y coordinates lie in a plane. So. for each orientation vector, tw\ views tell us two
different planes that include the vector. As long as our viewpoints are not identical.
these planes intersect in a line. which tells us the direction of the orientation vector.

It might seem paradoxical that from three views we can determine the rigid struc-
ture of oriented points, while we need four views to determine their affine structure.
But keep in mind that a vi , of an object provides us with less information about
the object if we assume th, ,,ew was created with a linear transformation than if we
assume scaled orthographic projection.

This result is interesting because it demonstrates a significant limitation to ex-
tending the affine structure from motion work. Koenderink and van Doorn suggested
that affine structure is an intermediate representation that we can compute with less
information than is required to determine rigid structure. However. we see that this
is not always true.

3.3 Conclusions

WXe see that our results from chapter 2 subsume some past work that has been done
with linear transformations. Both linear combinations and affine structure from mo-
tion are obvious implications of our results, which also provide a low-dimensional rep-
resentation of a model's images. We also see that just as indexing is fundamentally
harder with oriented point features than with simple points, other results derived for
point features cannot be extended to oriented point features. This calls into question
the relevance of these results to the interpretation of complex images.



Chapter 4

Building a Practical Indexing
System

Until now we have discussed indexing rather abstractly. We have focused on deter-
mining the best continuous representation of a model's images in the absence of error.
To perform indexing with a computer we must represent these images discretely. For
our system to work on real images we must account for sensing error. This chapter
will address these issues.

To take stock of the problems that remain for us, let us review the steps that are
performed by the indexing system that we have built.

1. We apply lower-level modules to images of the model at compile time, as part
of the model building process, and to images of the scene at run time. These
include:

(a) Edge detection.

(b) Straight-line approximations to edges.

(c) Grouping. We use line segments to locate groups of point features that
are likaly to come from a single object. The grouping module described
in chapter 6 outputs groups of points along with some information about
how they should be ordered.

2. At compile time:

(a) We find ordered collections of point features in the model that the grouping

system is likely to group together in images.

(b) We determine the lines in a and 3 space that describe the images that
each ordered sequence of points can produce, using the results of chapter
2.

91
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(c) We discretely represent these images in hash tables.

3. At run time:

(a) We find ordered groups of points in an image.

(b) For each ordered group, we look in the hash tables to find matching groups
of model points.

(c) Indexing produces matches between a small number of image and model
points, which we use to determine the location of additional model features.
We use these extra features to verify or reject the hypothesized match.

We will aiscuss grouping in chapter 6. In this chapter. we describe the remaining
issues: points 2b, 2c, 3b, and 3c. We first show how to fully account for the effects
of error in our system by analytically characterizing the models that are compatible
with an image when we allow for bounded amounts of sensing error. This allows us
to build an indexing system which is guaranteed to find all feasible matches between
an image group and groups of model features. We then discuss some of the issues
involved in discretizing our index spaces. Finally, we show that our representation
of a model's images lends itself to a simple method of determining the appearance of
the model based on the location in the image of a few of its poi-As.

We use these results to build an indexing system, and then we measure its per-
formance. We answer four questions: how much space does the system require? how
much time does it require? how many matches does it produce? and is the system
accurate? The space requirements of the system are easily measured. In addition to
some fixed overhead, the run time of the system will depend on how many cells we
must examine in index space in order to account for error. The number of matches
that the system will produce tells us the speedup that indexing can provide over a
raw search through all possible model groups. Additionally, we measure the effect
on this speedup of a number of different simplifications that we have made. We
use a linear transformation instead of scaled orthographic projection. Since a linear
transformation is more general, a set, of model points might be matched to a set of
image points with a linear transformation, but not a scaled orthographic transforma-
tion. And we make some simplifications in order to handle error. We also simplify
when we discretize our space. So we run experiments to individually determine the
effects of each of these choices. Finally, we need to check that our indexing system
will produce the correct matches, that it will match real image points to the model
points that actually produced them. We are assured that this will happen if our
assumptions about error are true in the world, but we need to test these assumptions
empirically. In the end, we have a practical indexing system whose performance we
can characterize both theoretically and empirically.
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4.1 Error

In chapter 2 we described how to represent a model's images as if there were no
sensing error. To handle real images and models. though, we must account for some
error. We choose a simple bounded error model. WVe assume that there is uncertainty
in the location of each image point, but that this uncertainty is no more than t pixels.
That is, the actual, error-free image point must lie within t pixels of the sensed point.
We do not attempt to make any use of a probability distribution on the amount of
error, or to characterize it in any other way. Of course we expect that occasionailY
this bounded error assumption may be violated, causing us to miss a potential match.
just as we expect to miss other possible matches through occlusion or through failures
in feature detection. We also assume that our model of the object is essentially error-
free. This is partly because we can form very good models of the 3-D structure of
an object by measuring it, if necessary, and partly because we assume that an\y error
that does occur in the model can be thought of as contributing a small additional
error to the image points.

One could imagine now extending our previous work by characterizing the set of
images that a model can produce from all viewpoints, considering all possible amounts
of error. Then we could represent all those images in a lookup table, and given a new
image. look at a single point to find all the models that could produce exactly that
image. This would not be a good idea. The problem is that our reduction in the
dimensionality of an model's manifold in image space would not be applicable if we
also allowed for error. We saw that we could characterize all the 0 coordinates that
a model can produce without reference to the actual location of the model's first
three points in the image, or to the model's 3 coordinates. However, the effect of a
small amount of error on these affine coordinates depends very much on the particular
location of the image points used as an affine basis. For example. if our first three
image points form a right, angle and are far apart, then a small change in t he location
of one of these points maxy have only a small effect on the affine coordinates of a
fourth point. If our first three image points are nearly collinear. then a small change
in one of the points can make them arbitrarily close to collinear. which causes the
affine coordinates of another point to grow arbitrarily large. Figure 4.1 illustrates
this effect. If we cannot ignore the locations of our first three image points, then the
dimensionality of our models' manifolds will have to grow in order to include all this
information. We could not possibly represent such big manifolds discretely.

So instead we account for error at run time. Then when we consider the effect
of error we only have to deal with the scale and particular configuration of points
in a single known image. and determine volumes in affine space that represent all
the images consistent with that image and bounded error. That. is. these volumes
represent all the affine coordinates that our image could produce when its points are



94 CHAPTER 4. BUILDING A PRACTICAL INDEXING SY.STEM

p3 o p 4  0p

(1j) P3  (1.25,1)

p1 p2 p1 p2

0 p4 0 (8,9)
(4,4)

Pp3

p1 p2 p1 p2

Figure 4.1: On the top, we show a fairly stable basis. A small change in P3 (upper
right) has a small effect on the affine coordinates of P4. On the bottom an equally
small change in P3 has a much larger effect on these affine coordinates.
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perturbed within error discs. If we account for error exactly. then the results are
equivalent whether we consider error at compile time. matching a thickened manifold
to a point, or at run time. matching a manifold to a thickened point. Either way. an
image would be mat ched to a model if and only if the model could produce that image.
allowing for perturbations from error. The difference between accounting for error at
compile time or run time then lies in the ease of imp)lementing either approach. and
in a trade-off of space for time. Accounting for error at compile time would require
more space, but would allow us to index at a single point instead of over a volume.
While in general we prefer to accept a space penalty to save run time, in this case the
space required to account for error at compile time is too great: it is not practical to
attempt to represent high-dimensional manifolds that have been thickened by error.

WVe determine the exact affine coordinates that are consistent with a noisy image
only for the case of four image points. The difficulty with handling more points is
that perturbations in the first three points -will affect the affiilme ioordialatc, of tli
other points all at once. So while we can determine what affine coordinates the
fourth point has as we perturb the first three points, and we can determine what
affine coordinates the fifth point has, we do not determine which affir coordinates
they both produce at once, and which ones they can each produce. but not at the
same time. Our results do allow us to provide a conservative bound on the affine
coordinates compatible with an image. because we can individually bound the affine
coordinates of each point. For each point, we determine the maximum and minimum
o and 3 coordinates it can produce. We combine these bounds to find rectanguloids
in n and 3 space that contain all the (a and 3 coordinates that could be compatible
with the image. This process is shown schematically in figure 4.2. This allows us to
build an indexing system in which we analytically compute volumes in index space.
By looking in these volumes for models to match an image, we are guaranteed to find
all legitimate matches to the image. But we may also find superfluous matches as
well.

4.1.1 Error with Four Points

We use a somewhat round-about route to find the affine coordinates that four points
can produce when perturbed by bounded error. We begin by considering a planar
model of four points, and an image of three points. Projection of the planar model is
described by an affine transformation, and the affine coordinates of the fourth model
point are invariant under this transformation. Given a match between three image
and model points, it is simple to determine the nominal location that the fourth
model point should have, in the absence of error. We then describe the locations it
may have when we account for bounded error in each image point. We call this set of
locations the potential locations of the point. We show that the potential locations of
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Figure 4.2: Without error, the fourth and fifth image points have individual affine
coordinates, as shown on top. When we precisely account for error in each point
separately, we find regions of a4-/4 space consistent with the fourth point, and regions
of a5-35 space consistent with the fifth point. We simplify by placing rectangles about
these regions. Then we may represent this error equivalently with rectangles in 04-05

space and /4-/I5 space.
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a fourth model point are described by" a surprisingly simple expression which depends
only on the afiine coordinates of the point. Using this expression, we can determine
whether a set of four model points is compatible with four image points. W\e show

that this is equivalent to determining which affine coordinates the four image points
can produce.

Consider four model points. P1. P2. P3, P4, and three image points. q, q2. and

q3- We match the three image points to the corresponding model points (ql matched
to pl etc...). Let 04 and 34 be the affine coordinates of the fourth model point with
respect to the first three model points. which are defined because the model is plainar.

Let us describe the sensing error with the vectors -es. This means that the "real"
location to which the i'th model point would project in the absence of sensing error
is qi + ei. Let qj = qi + ei. Then our assumptions about error are expressed as:

{ieill < c. Let u' = q2 - ql and v' = q3 - ql. Let r4 =q + 0 4u' + ,34v'. That is.
if we use the match between the first three image and model points to solve for an

affine transform that perfectly aligns them. and apply this transform to P4. we will
get r4.

Let q' stand for the "real" location of P4 in the image. that is. the location at

which we would find P4 in the absence of all sensing error. P4 will actually appear
in the image somewhere within a circle of radius f about q', because of the error

in sensing p 4 "s projection. So. our goal is to use ql,q2,q3.Pl.P2 and P3 to first

determine the set of potential locations of q4, and then thicken this set by t to find
all the potential locations where we might sense the projection of P4.

For a particular set of error values.

q4 = (ql + el) + a4((q2 + e2 ) - (q, + el)) + 34((q3 + e3) - (q, + el))

This is because (ql +el. q2 +e2. q3+e3) are the locations of the error-free projections
of the model points in the image. So we can find q', using these three points as a
basis. knowing that q' will have the same affine coordinates with respect to this basis

that P4 has with respect to a basis of (P1, P2, p3).

q' = ql + el + 0 4q2 + 0 4e2 - C4ql - a 4el + 3
4q3 + 3'4e3 - 34q1 - •34e,

q/ = ql+ o 4 (q 2 - ql) + 3 4 (q 3 - q1) + el + o 4e2 - -a 4e, + 3 4e3 - 3 4el

= r4 + el(1 -04 - 34) + e 2 o 4 + e33 4

When we allow the ei to range over all vectors with magnitude less than f. this defines
a region of potential locations of q' . Note that r 4 depends only on the location of

the image points, and is independent of the error vectors.
In the above expression, r 4 is fixed and the expressions involving el. e2, and e3

can each alter the values of q' within circles of radii (li - a4 - 341, E11a4l. and E341
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respectively. Since each of these expressions is independent of the others, adding
them together produces a circle centered at r4 whose radius is the sum of the radii of
each of the individual circles, that is, a circle of radius: C(1 - 04 - -41 + 1041 + 1,341).

\\hen we consider that we may have an error of ( in sensing the fourth image
point as well, this expands the region by t. Xe find that the potential locations of
tile fourth image point., such that there exists some orientation and bounded sensing
error that aligns the image and model points, is a circle, centered at r4. with radius

11l- 0 4 - -341 + 1I 41 + 1141 + 1 )
This result has a surprising consequence. For a given set of three model points

matched to three image points, the size of the space of potential locations of a fourth
model point in the image will depend only on the affine coordinates of the fourth
point. It will not depend on the appearance of the first three model points. That
is, it will not depend on the viewing direction. Even if the model is viewed nearly
end-on, so that all three model points appear almost collinear, or if the model is
viewed at a small scale, so that all three model points are close together, the size of
the potential locations of the fourth model point in the image will remain unchanged.

However, since the viewing direction does greatly affect the affine coordinate svs-
tem defined by the three projected model points, the set of possible affine coordinates
of the fourth point will vary greatly. For example, changes in the scale of projection
simply shrink the affine coordinate frame, and so multiply the size of the feasible
region for the fourth image point in this frame. We must account for this variation in
affine coordinates in order to perform indexing. The fact that this variation depends
on the configuration of the image points that are used as a basis explains why it is
convenient to account for error at run time, when the locations of the image basis
points are known.

Partial solutions to the problem of determining the effect of error on planar model
matching have previously been produced in order to analyze the performance of dif-
ferent recognition algorithms. In Huttenlocher and Ullman[57], the affine transform
is found that aligns three image and model points. This is used to find the pose of
a three-dimensional model in the scene. Remaining model points are then projected
into the image, and matching image points are searched for within a radius of 2C of
the projected model points. To analyze the effectiveness of using an error disc of 2E
when matching projected model points to image points, Huttenlocher[56] considered
the case of planar objects, as we have. He was able to show bounds on the poten-
tial locations of model points in the image in certain simple cases. These bounds
depended on assumptions about the image points. Here we have shown exact bounds
on the potential location of model points, and we show that these bounds do not
depend on characteristics of the image points. For example, we may now see exactly
when . circle of 2c, which alignment uses, is the correct description of the potential
location of a projected model point (when 0 < a4./34 and 04 + /4 < 1), a"4 when it
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is too small.
InI order to analyze the geometric hashing approaches to recognition of Lamdan.

Schwartz and \Wolfson[70], researchers have also considered the effects of error on
the affine coordinates that are compatible with four image points. Recall that in
geometric hashing, the invariance of the affine coordinates of four planar models
is used for indexing. Lamdan and \Volfson[72J and Grimson and Huttenlocher[48]
have placed bounds on the set of affine coordinates consistent with an image under
special assumptions, and used these bounds to analyze the effectiveness of geometric
hashing. Costa. Haralick. and Shapiro[34] have also discussed methods for estimating
the potential numerical instability of affine coordinates, and suggested ways of dealing
with this instability. Xe are now in a position to precisely characterize the set of affine
coordinates that are consistent with a set of image points, assuming bounded error.
This characterization has also been used to analyze the effectiveness of alignment and
geometric hashing. in Grimson. Huttenlocher and Jacobs[49].

Suppose we have image points, qj, q2, q3 and q4. Let the affine coordinates of q4
with respect to (ql.q2. q3) be (6, 3). If a fourth model point has affine coordinates
(04, 34) with respect to the three other model points, we would like to know whether
the model could match the image. If we match the first three image and model
points, we know that the fourth model point will match any image point within
f(1-0 4 - A34 + 104 1+ 134 1-+-1) of r 4 , where here r 4  = q +04(q 2 - ql) +34q3-q).
So the model and image can match if and only if the distance from r4 to q4 is less
than or equal to: C(11 -D 4 - 341 + 1041 + L341 + 1). That is. if and only if:

j1q4 - (ql + a 4(q2 - ql) + .34 (q3 - ql))I I _ f(11 • -04-341 + 1041 + 1341 +0 )

that is:

1I(qi + 6(q2 - qj) + 3 (q3 - qj)) - (q, + 0 4 (q2 - qj) + 34(q3 - ql))I1

- j(6- 4 )(q2 - ql) + (3 -34)(Q3 - ql)JI

< ((I1I-a4 -341 + JQ41 + [341 +1)

Following Grimson. Huttenlocher and Jacobs, if we let u = I Iq2 - qll.-1' =

I q - ql I and let 0, be the angle formed by the vectors from ql to q2 and q3,
then the above equation becomes:

((0 - -)U)) + + 2(6 - 04)(.34 - )vuv(cos t,)

_< 12(11 - 04 -- 341+ 1041 + 1,341 + 1)2

Note that all the values in this equation are derived from the four image points.
except for 04 and 34. So this equation tells us which affine coordinates a model may
have and still match our image, to within error bounds. This is the same as telling
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Figure 4.3: There are seven different expressions without absolute values that de-
scribe the radius of the error regions. Which expression applies to a model depends
on whether 6 <0, ) < 0 and 6 + 3 < 1.

us which affine coordinates our image may produce if we perturb each image point
by no more than f pixels. So this equation describes a region of a4-34 values that
correspond to models that could produce our image.

We now wish to deal with the pesky absolute value signs in this equation, so
that we can describe the boundary it gives. These absolute values mean that if we
divide the a-!3 plane into seven parts, then the radius of the error circle for a model
is described by a simple expression without absolute values which depends on which
region its affine coordinates fall in, as shown in figure 4.3. We can find the boundary
of affine coordinates consistent with an image by combining seven different, simpler
boundaries.

As an example, for a particular image we just consider the models for which a 4 > 0,
/34 > 0 and a 4 + 34 > 1. In that case, the radius of the error region associated with
the model is 2 E(a4 + 34). So for a given image, one possible set of models consistent
with that image are the models for which 04 > 0,/34 > 0, a4 + /34 > 1 and

((d - a4)U)2 + (()i - 34)v)2 + 2(d - a4)(/0 - /34)Uv(cOs5/,)
= f'-(1 0-- 04 -- /34) +1 a14 "+l /4 + 1 )2

2 2042
=

This is the equation for a conic in 04, 04. Combined with the inequalities constraining
a 4 and /34 we get the intersection of a conic and a region in 04-/04 space, where this
intersection may well be empty. In general, we can remove the absolute value signs
by writing down seven different conic equations, and intersecting each one with a
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different region of o4-,14 space. W\'hen we intersect each conic with the appropriate
region of 04-34 space, we get a set of (04.1.1) values consistent with the image. The
union of these seven sets of values gives us the entire set of values consistent with the
image.

4.1.2 Error for Our System

We use this precise bound on the effects of error with four points to compute a
conservative error volume for indexing. To do this, given an image group with u
points, for each affine coordinate of 04, .... k,, 34 .... 3,, we compute the minimum
and maximum value that coordinate can have. For each point, we compute the
intersection of each of the seven conics with the appropriate region in affine space.
and find the maximium and minimum a and .3 values that point can have over all seven
possibilities. Taking the o and 3 values separately, we have two rectanguloids in n and
3 space. We use each rectanguloid to separately access each of the spaces. Looking
at all the cells in index space that the a rectanguloid intersects, we are guaranteed
to find all the models that could have produced o values compatible with our image.
We find all the models with compatible 3 values as well, and then intersect the results
to find all models consistent with our image. In principle the need for intersection
reduces the asymptotic performance of our system, because the a values alone will
have less discriminatory power than both a and 3 values combined. But in practice
this intersection takes very little time.

This indexing method will produce unnecessary matches for two reasons. First.
we are assuming that the affine regions compatible with each additional image point
are independent. We do not take account, of the fact that as one of the three basis
points is perturbed by error, it will affect all the image's affine coordinates at once.
Understanding the nature of this interaction is a difficult problem that has not been
solved. Second, we are bounding each n value independently of its corresponding 3
value. This is equivalent to putting a box around the conics that describe a point's
compatible n and 3 coordinates, a box whose sides are parallel to the a and 3 axes.
These conics describe ellipses in most cases. If an ellipse is elongated, and on a
diagonal to the a and 3 axes, then putting a box around it is a very conservative
bound. This second simplification makes it easier to decide how to access our lookup
table, but in principal we could compute which cells in a space are compatible with
a particular set, of cells in 3 space, and make our lookup more precise.

4.2 Building the Lookup Table
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Figure 4.4: An example of the grid spacing used in the lookup table, for a two-
dimensional table.
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\We have now described how to analvticali" map both iniages and iodeil,, to regions
in o and .3 space where we can match them. To implement this approach in a
computer, we must divide (k and . space into discrete cells so that we can finitely
represent thiese continuous regions. We do this in a straight-forward way, dividingeach
(dimension of each space into discrete units, so that the entire spaces are tesselated
into rectanguloids. The only (question that arises with this approach is in how an
individual dimension of each space should be divided.

Because the error regions grow larger as the atfine coordinates grow larger. we do
not discretize the affine spaces uniformly. To decide how to discretize the spaces. we
note that the size of our error regions is direct lh dependent on t he locat ion of the first
three image points, which we cannot know at compile time. and on the expression:
(0 + II - () - ±i41 I + 1i). Let us consider how this second expression varies

with 04 for the simple case where 314 = 0. This expression is a coustatt 2( if the n4

coordinate is between 0 and 1. Outside that region it grows linearly. So although the
size of the error rectanguloids depends on many factors, we can determine the way
in which their size varies with Ck4 when other variables are held constant. \Ve choose
to discretize a and 3 space according tu this variation. Therefore. we uiiformly
discretize each coordinate of the affine spaces for values between 0 and 1. and then
discretize into ranges that grow linearly with the affine coordinate for other values.
Figure 4.4 illustrates this discretization for a two-dimensional affine ,pace.

We also can only represent a finite portion of the space. so we ignore all affine
coordinates with an absolute value of 25 or greater. This threshold is set fairly
arbitrarily. but it is easy to see that if a set of image points have affine coordinates
greater than 2-5. then the size of the error regions they give rise to will also be quite
large.

\We ran an experiment to show that this is a good way to discretize the space.
We randomly formed sets of four image points, by picking four points from a uniform
distribution inside a square 500 pixels wide. For each set of four points, we COmputed
the range of a values with which it was consistent, assuming error of five pixels. In
Figure 4.5 we plot the middle of these ranges against their width, after averaging
together ranges with similar middle values. This shows that it is true that the error
ranges with which we will access the table are fairly constant ,etween 0 and 1. and
grow linearly outside those values. Note that the width of the error rectangles plotted
in Figure 4.5 dip downward as a approaches 25 or -25, because we excluded n ranges
that would not fit entirely in the lookup table. These experiments also show that we
will access the extreme parts of the table with bigger rectanguloids. so it would be
wasteful to discretize these parts finely.

Given our discretization of affine space. we then just compute which cells are
intersected by each line that represents a model's images. At those cells we place a
pointer to the group of model points that the line represents. Although groups of
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Figure 4..5: These graphs show how the size of error regions grow in one of their
dimensions as a function of one of the aff~ine coordinates of the fourth image point,.
The bottom figure is a blowup of the •.raph, near 0. We can see from the above figures

that the size of error rectangles is coh, tant for 0 -< a 4 _< 1, and grows linearly outside
that range.
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(liffe'ent sizes are represented bY lineies in spaces of different dimensions. we physically
store all active cells inI a single o and a single 3 hash table.

\\e could coln ttu tilt he lines in o and 3 space that describe a group of point feat ures
easily from their 3-1) sli ructure. Instead, it is Miore coilvenient to deteriniiie tile lines
directly from a series of 2-1) images of tile object. \\e use tile svsteni described in
chapter 6 to find groups of point features of aim object in a numbl)er of different images.
We then establish a correspondence between these point features by hand. Therefore.
for a particular group of ordered model points, we have available the 2-D locations of
these points ini a set of images. lii all images we mme the same three points as a basis.
and find the affine coordinates of time ot her points with respect to this basis. We are
deferring unt il chapter 7 a discussion of how we order t hese groups of points. and how
we choose points for the basis of the groups. For each image. then. we have a set of
aftine coordinates that we may treat as a point in o space and a point ii .1 space.
\\e theim fit a line to tile points in each of the,;e spaces. This gives us two liles that
describe all tile iii ges that tile model coul-! produce. We use a simple least squares
method to do this line fitting. \\e could perhaps do better by taking into account
the fact that the stability of each affine coordinate of each image is different. but we
have not found that necessary.

4.3 Performing Verification

\We have now described how to build and access our indexing table. XWe may also
make use of some of the tools that we have developed to efficiently verify hypothetical
matches produced by our indexing system (step 3c in the outline at the I eginning ef
tile chapter). Above. we show that we can build our lookup table without deriving
an explicit model of the 3-D structure of an object. In the same way. we can also
generate new images of the object. in order to perform verification. This is quite
similar to the linear combinations work of tTllman and Basri[105I. The basic idea is
that given a match between some image and model point.s. we have a point in affine
space matched to a line in affine space. Due to image error, the point produced by
the image will not fall exactly on the line corresponding to the model. By projecting
the point onto the line, we can find a set of affine coordinates which the model could
have produced. and which are near the affine coordinates found in the image. We can
then use these affine coordinates to determine the affine coordinates of all the other
model points.

To implement this, we first select line segments in images of the model that come
from the object. We match the end points of these line segments by hand. Then we
construct lines in n and 3 space, separate from the lines we use for indexing, which
represent all the points on the object, including the ones we use for indexing and the
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endpoints of tile line segments that model the object. For every triple of points that

we will use as a basis for indexing, we also use this triple as a basis for describing all

tihe points.
Let us illustrate this with an example. Suppose indexing inatches model points

PI- P2- P3. P4. P5. PC to image points qlq2,q3.q4,q5,q6, and suppose based oil
this match we wish to project model points P1, P2, ... Pi, Into the image. At compile
time. we use the points P1, P2- P3 as a basis, and compute tile two lines in the afline

spaces that describe all images of the model when the image of these three points

are used as a basis. (This is done at compile time for all possible basis triples).

Call these two lines Ll and L2. These lines are in (n - 3)-dimensional affine spaces.
(oI...n,) and (34 .... .,,). because theyv represent the locations of n - 3 points using the
first three points as a basis. Our six uiatched image points map to two points in

the 3-dimensioual affine spaces (04.,n.5, o) and (.34, 35, ). ('all these points al and
bl. By projecting L1 and L2 into these lower dimensional spaces. we get lines that
describe tile possible images that the first six model points can create. BY finding

the point on the projection of Li closest to al we find the n coordinates of the image

of the model that best match the image points. Similarly, we find the appropriate

3 values. These values determine locations on L1 and L2 that tell us the affine
coordinates of all the model points in the image that w.,ill best fit the matched image

points. Without explicitly computing the viewing direction we have computed the
appearance of the model, when seen from the correct viewing direction. (A different
method must be used if the matched model points are coplanar. because in that case

their affine coordinates provide no information about viewing direction).

In addition to determining the effects of the viewing direction on the image. we

must also allow for the effects of the affine transformation portion of the projection.

However. once we have determined the affine coordinates of all tile projected model
points, it is straightforward to apply a least squares method to find the affine trans-
formation that optimally aligns the image points with the projected model points.

4.4 Experiments

Thi" section describes experiments measuring the performance of the indexing system.

The main issue at compile time is the space required during step 2c. when the hash
table is built. At run time. we will measure the number of steps required to access

tile table during step 31. and( the number of matches that this step produces. In the
experiments described in this section. we represented a model of a telephone in our
indexing tables. In chapter 7 we will describe how we formed groups of point features
on the telephone. For our purposes in this chapter. it is sufficient to say that we
explicitly represented 1.675 different groups of between six and eleven ordered point
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Indexing Space
Group Number

Si-e Entries
6 110
7 128
8 154

9 198

10 230
11 270

Table -1.1: This table shows the average amount of space required to represent the
lines that correspond to our model's images. with d = 50. Each row of the table
shows the average number of cells intersected by a line corresponding to a group of a
particular number of points. This is the number of cells intersected in just one space,
n or .1.

features from the telephone, and measured the performance of the indexing system
with this collection of groups.

We can analytically bound the space required by the indexing system. It will be at
most linear in the discretization of the lookup table, and in the dimensionalitv of the
space. A line passing through a high-dimensional space is monotonically increasing
or decreasing in each dimension. Therefore, if we cut each dimension of the table
into d discrete intervals, each time the line passes from one cell to another, one (or
more) of the dimensions is changing value. There can only be d such transitions in
each dimension, for a total of (n - 3)d transitions in the n - 3 dimensional space in
which a group with n points is represented. Therefore, the maximum space required
to represent a group with two lines in two spaces is 2(n - 3)d. In table 4.1 we show
the actual number of table entries made in experiments with d = 50. We can see that
our bound on the space requirements is correct, and a reasonable approximation to
th,k ainount of space actually used.

The time required to perform indexing will depend on the number of cells at
which we must look in the index table, and the number of entries found in these
cells. The number of cells examined is exponential in the dimensionality of the table.
because the volume of a rectanguloid grows exponentially in its dimension. If the
side of a rectanguloid is typically smaller than the width of a cell in the table, than
finer discretization will not increase the number of cells examined, but in general
the number of cells examined grows with the level of discretization. Assuming for
purposes of exposition that each side of each rectanguloid has width r. and that the
whole index space has width AI, than a rectanguloid will intersect ([!] )"-3 cells.
This gives us a rough idea of the actual behavior of the system. In practice, we find
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that for d = 100 and ( = 5 pixels. a rectanguloid typically intersects about 6"'-:
cells in the table. This is starting to grow quite large. indicating that we should
not tesselate the space any finer than this. and perhaps not quite so finely. On tlie
other hand, keep in mind that the work performed for each cell is simply a hash table
lookup.

\We also find that occasionally we may index using a group of image points with an
unstable basis or high atfine coordinates. This can produce a very large rectanguloid
that intersects a large number of cells. Looking at all these cells may require excessive
computation. One solution is to simply ignore such image groups. which are likely
to be less useful for recognition in any case. A better solution might be to discretize
the space into several separate tables. using several different values of d. Then at
run time. when we know the size of the rectanguloid that a particular group of image
features produces. we may choose to look in a table with the appropriate resolution
for that rectanguloid. This would guarantee both that we do not need to look in too
many cells. andl that our discretization would not introduce too much error.

\Vhen looking up a rectanguloid it an affine space. we have to take the union
of everything we find in every cell at which we look. We then have to take the
intersection of the result of looking in two rectanguloids in two spaces. These unions
and intersections take time that is linear in the number of entries we find. If table
entries are uniformly distributed throughout the lookup space, then. given that there
are d"- 3 cells in a space. and about d(n - 3) entries per model group. if there are N
model groups than there is an average of

N(,1 -3)
di-4

entries in each cell. for a total number of objects looked at by a rectanguloid of about:

N(n - 3)d( n-3

For the values mentioned above (d = 100, • = 6) and for n = 7, and A = 1000. we
would expect about five objects to be found by each rectanguloid. This should be an
underestimate, however, because in reality objects will not be uniformly distributed
about the index space. \,We would expect both models and images to form clusters.

Overall we can see that indexing requires reasonable amounts of time if we are
careful when deciding how to discretize the table. Space requirements are also modest
for a single group of model points, although they may become an issue if we need to
represent large numbers of model groups.

Until now. our discussion just shows that indexing can be practical in terms of
space and time. The most important question, though. is how useful call indexing
be? How much call we gain by using a lookup table to find geometrically consistent
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matches instead of explicitly considering all matches. To determine this we want to
measure the speedup provided by indexing, that is. for a group of u image points.
we want to know the likelihood that a group of i model points that did not produce
these "mage points will still be matched to them 17\indexing. \\e vill call the inverse
of th likelihood the spf(dnp the system provides. because this is the reduction in the
num r of niatches that we consider with indexing. as complared to raw search.

There are several factors that might reduce the speedup of our system, and we
wish to measure them individually. First, we are using a linear transformation for
indexing, which will match an image to more models than would scaled orthographic
or perspectivye projection. Second. we make two somewhat different approxiimat iolls
when we use rectanguloids as t he volumes t hat access t he lookup taable: we are p)lacing
a rectangle about the error region associated with four points. which is typically
an ellipse, and we are assuming that error has an independent effect on the aflinle
coordinates of each image point. Third.i), I) representing the lookup table discretely.
we will make approximations. We may match an image to a model because the
niodel's line and the image's rectanguloid intersect the same cell. but do not intersect
each other. So our goal is to determine the overall speedup that our system provides.
and to separately measure the effect of each of these approximations.

We begin with some analytic comments on this speedup. and then present tile

results of experiments.
\We first consider the speedup that an ideal indexing system can produce when

images formed with scaled orthographic projection contain a hounded amount of
sensing error.' The expected speedup will depend on ii. and we denote it .S(n). \Ve
show that there are constants A, and j such that A-"-: <_ s(n) < i,, 3 , in the case
where image points are chosen independently from a uniform random dist ribut10tion on
the image.

First we show that s((n) > kV . The speedup for a given image group will depend
on the number of model groups that can appear like the image group. within error
bounds. Suppose n is four. We know that at least one pose of the model exists which
will perfectlY align the first three model points with the first three image points.
About this pose will be a set of poses for which the three model points project to
within fixed error bounds of the image points. As the first three points gyrate through
this set of poses. the projection of the fourth model point sweeps out some region
of the image. ('all this region 14 (this is the potential location, for 3-D models and
scaled orthographic l)rojection). If the fourth image point is within error bounds of
14. then a pose exists that makes the model look like the image. Let 14 be those
locations of the fourth point such that it is within error b)ounds of 14. Under the

'The following analysis appeared in Clemens and Jacobs[32]. and is joint work between the author
and David Clemens.



110 CHAPTER -. BUILDING' A PRACTICAL INDEXING SYSTEMI

uniform (listribution assumption. the probability that a random image point will fall
within PI is the area of IP divided by the image area. The inverse of this is the speedup
produced by indexing with four points. compared to checking all models. We call this
ratio V.

Suppose ni = 5. The average speedup from indexing will be at least k2. To see
this. we can form a region I' for thie fifth model point in just tlie same way we formed

4I. That is. I! does not depend oil the fourth model point or the fourth image point.
There is a pose that aligns the image and model groups to within error bounds only
if the fifth image point falls inside P. and the fourth image point lies in 14. Call this
event .42. Since the two regions are constructed independently. and since tile image
points are chosen independently. the probability of .42 is equal to the product of the
probalbilitY of each event occurring separately. This implies a speedup of k.2. Htowever.
the speedup is even greater: event A12 is a necessary condition by construction of I,'

and E. but not a sutifficient condition. since it must also be the case that there is a
sigh pose that aligns both points. In general, indexing will produce a speedup of at
least k"'.

\Ve now show that for some j, .s() • j,,-'. The speedup of indexing can only
be decreased by accounting for error. Therefore. if we ignore the error in the first
three image points, but consider the error in subsequent points. we may derive a loose
upper b)ound oil .s( n). Even without varying the pose that aligns the first three points.
there is all error region in the image due to the error in the fourth point. This error
region will occupy some proportion. 1/j. of the image area. For each additional point
there is another error region of the same size, since error in each point is independent.
Analogous to the lower bound, the upper bound is therefore j`, 3 .

is just -a-" where A is the image's area. Suppose, for example. that the error
bounds ol - Jh image point, are a circle of radius five pixels. and the image is 500

P;xels by 500 pixels. Then j . 3200. With radius three, j - 8800.'
This same argument applies equally well to a linear transformation. if we replace

the number :l3 with the number 4, since a correspondence between four points is needed
to determine an object pose in this case. So in general we see that the potential
speedup of indexing increases exponentially with the group size.

Intuitively, the fact that one more point is needed to determine a linear trans-
formation than to determine a rigid transformation suggests that in using a linear
transformation we will forfeit the extra speedup that would be produced by using
one extra point. That is, we would expect a group of size ni with scaled orthographic
projection to produce the same speedup as a group of size n + 1 with a linear trans-
formation.

We now perform some experiments to determipe these actual speedups. We per-

"-This ends the extract from Clemens and Jacobs.



4.4. EXPERIMENTS 111

Nurn. t Ideal Ideal Analytic Table Table Nurn.
Pts. Bound Bound ('ompar- d- =50 d = 100 Possible

Orth. Linear ison Matches
4 5 Ran. 270 60.000

Real 46 60.000
3 Ran. 10,000 < 78.1 2:3.1 42.4 10.000
5 Raan. 12,500 <' 1.1102 E39.72 16.22 26T 12,500'

10.0002

Real 2,500 10.000
7 Ran. 1,110 26.2 12.4 18.0 10.000

10 Ran. 385 17.5 8.88 12.5 10.000
6 3 Ran. 10,000 < 1,250 357 178 10,000

5 Ran. 10,000 < 526 189 :30:3 10.000
Real 244 7

7 Ran. 10.000 < 2:33 106 156 10,000

10 Ran. 10,000 < 122 60 85 10.000
7 3 Ran. 10,000 < 3.330 1,670 3.330 10.000

5 Ran. 10,000 < 1.110 769 1.000 10.000
Real 3.470 5

7 Ran. 10,000 < 5.000 714 1,430 10.000
10 1 Ran. 10,000 < 385 22"2 294 10,000

Table 4.2: This table shows the results of tests on the effectiveness of indexing. Each column
shows the speedup produced by indexihg under various circumstances, where speedup is defined to
be the total number of possible matches L) •,\ een image and model groups, divided by the number
of matches produced by that type of indexing. Column on, gives the number of points per group in
the experiment. Column two gives the amount of error aliuwed in matching. Column three indicates
whether the model and image were randomly generated, or came from real objects and images. The
"Ideal" methods indicate that we explicitly compared each group of image and model points, used a
least-squares method to optimally align them, and then determined whether this matched the points
to within (. The fourth column shows this for a scaled orthographic projection. the fifth for a linear
transformation. Column six shows the result of analytically comparing the lines that represent a
model's images to the rectanguloids that represent an image with bounded error. Columns zeven
and eight show the results of comparing these objects via a lookup tab!r-, where -ach dimension
of the table is divided into d discrete ranges. ('olumn nine shows ihe number of possible matches
between image and model groups for that set of experiments. When different values in the same
row were based on different numbers of matches, we fo,'notes to identify which values belong
together.
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form experiments with randomly generated models and images in which we excluded
particularly unstab)le images. and also with real models and images in which image
and model groups were formed by hand. In table 4.2 we compare speedups that were
derived in several different ways. We first show experiments performed b ('lemens
and .Jacobs to bound the maximum possible speedup for scaled orthographic projec-
tion. In this experiment, instead of finding models by indexing, we matched each
group of image points to permutations of each model group, and tested each match
to determine if the model could appear like the image. Newton's method was used
to find the model pose that minimized the distance from the image points to the
projected model points (see Lowe[731 for a discussion of the application of Newton's
method to this problem). If in this pose. each model point projects to within error
bounds of each image point. then a correct indexing system would have to produce
this match. This allowed us to determine a lower bound on the number of correct
false positive matches, that is. matches that are geometrically consistent, although
the matched model points (lid not actually produce the image points. We did the
same thing with the linear transformation. using the method described above to find
a least squares fit between image and model points. In the next experiment we ana-
lvtically compared the aftine lines that describe a model with the rectanguloids that
describe an image. This is just like our table lookup, except we avoid the effects of
discretization by explicitly comparing each line and rectanguloid to see if they are
compatible. Finally, we compared table lookup with different values of d.

We also need to check that our indexing system finds the correct matches. The
mathematics guarantees that we will find the right answers if our assumptions about
error are met, but we need to check that these assumptions hold in real images. In
chapter 7 we will present experiments with the entire recognition system, but we have
also tested the indexing system using automatically located point features that we
grouped by hand. Out of fourteen such groups, two produced rectanguloids outside
the bounds of our lookup table, but the other twelve groups were in each case matched
to the correct model groups. allowing for five pixels of error when indexing, and using
a table in which d = 100. Figure 4.6 shows two groups of image features, the groups
of model features to which the indexing system matched them. and the resulting
hypotheses about the location of the object. Table 4.2 also shows the speedups
achieved with these groups.

There are several conclusions that we can draw from these experiments. Most im-
portantly. they show that. our indexing system can produce significant reductions in
search. especially when we use groups of seven or more points. This demonstrates the
tremendous potential of indexing, provided that we can produce a reasonably small
number of candidate groups in both the model and the image without sacrificing reli-
ability. \Ve also see the speedups that we give up by making various approximations.
It does appear that using a linear transformation is giving up at. most the constraint
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Figure 4.6: On the top are two scenes containing the phone. Underneath each
scene is a hypothetical projection of the model considered by the recognition system.
Both are correct. In the hypotheses, edges are shown as dotted lines, projected line
segments appear as lines, circles represent the image corners in the match, and squares
show the location of the projected model corners.
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N uin. Ideal Analytic Table Table Table Table Numn.
Pts. Bound 'ompar- d = 50 d = 100 d = 200 d = 400 Possible

Linear ison Mlatches
5 3 Random 2,500 < 52.1 14.5 27.2 37.9 43.9 2.500

5 Random 357 28.4 13..) 19.5 23.8 26.6 2.500
7 Random 833 21.7 9.8 14.5 17.7 20.2 2,500

6 3 Random 2. 500 < 833 625 833 833 833 2.500
5 Random 2.500 < 278 132 208 227 227 2.500
7 Random 2.500 < 167 80.6 119 147 156 2.500

Table 4.3: This table shows further results of tests oil the effectiveness of indexing.
similar to those shown in table 4.2.

that is available in one image point: our least squares bound on the speedups of linear
transformation indexing for five points provides a speedup that is a bit larger than
the speedup we get for four points with scaled orthographic projection. \We also see
that bounding error with a rectanguloid results in a significant loss of power in the
system, and we would expect this loss to grow with the size of the group. So if we
are concerned with increasing the speedups provided by indexing. it might be useful
to attempt to use a tighter bound on the error regions.

Our results do not show much of a loss in speedup due to table discretization.
It is time-consuming to run experiments with a fine discretization. because many
table cells must be accessed in lookup in those cases. However. table 4.3 shows some
additional results. In these experiments, the same models and images were compared
with d = 50.100.200,400. We can see that with d = 400 there is almost as good
performance with the lookup table as with the analytic matching. But given the
run-time and space costs of a higher value for d, it seems reasonable to choose d = 50
or d = 100.

The significance of our results will depend on how we intend to use indexing. If we
expect that grouping can provide a small number of groups with many point features,
then we do not need to be too concerned with increasing the speedups provided by
simple hash table lookup. If we want to try to take advantage of groups with only four.
five or six points for indexing, we can see the importance of taking care with issues
such as the projection model used. table discretization. and error. This is pointed
out at greater length in Grimson. Huttenlocher. and Jacobs[49]. This lesson may also
be relevant to invariant based indexing systems that use projective transformations
and perform indexing with the smallest sized groups possible, such as Weiss[Il1],
Forsyth[44]. and Rothwell[92].
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4.5 Comparison to Other Indexing Methods

Previous systems have also performed feature matching using hash table lookup.
This has been done for the recognition of 2-1) objects in 2-1) images by \\allace[107].
Schwartz and Sharir[91]. Kalvin et al.[63], Jacobs[60], and Breuel[17i . and for the
recognition of 3-D objects from 3-D data by Schwartz and Sharir[94-t al(l b)Y Stein
and Nledioni[98]. However, in these domains, invariant descriptions of tihe Inode!s are
available, and so the issues involved in indexing are very different. In this thesis we
have focused on the problems of representing a 3-D model's 2-D images. and in this
chapter. on the problem of accounting for the effects of error in this domnain.

There has been past work in this domain. which is more directll relevant to our
current work. Previous authors have noticed that one could represent all of a model's
imnages under scaled orthographic projection by sampling the viewing sphere. and
representing in a lookup table each image that the model produces from each p)oint
on the viewing sphere. By representing these images ii a way that is invariant under
scale changes and 2-D translation and rotation all possible images of the model are
represented. For example. if a group of image features includes two points. lhen one
can assume that these points have coordinates (0.0) and (1.0). and then describe all
remaining features in terms of the coordinate svsteni that this gives us. With such
a representation, one automatically factors out the effects of four degrees of freedolm
in tile viewing transformation. and need only be concerned with the two degrees of
freedom captured in the viewing direction. The set of all images produced by( different
viewing directions will therefore form a 2-D manifold. By sampling the set of possible
viewing directions, one is therefore implicitly sampling the 2-D manifold of images
that a model can produce.

Thompson and Mundy[100] use this approach to represent model groups consisting
of pairs of vertices. For each pair of 3-D vertices in a model. they sample the set of
possible images that the vertices may produce. and store these images in a lookup
table. along with the viewing direction. Then. given a pair of image vertices at run
time. table lookup is used to determine the viewpoint from which each pair of model
vertices might produce a particular pair of image vertices. Thompson and Mundy
therefore use lookup primarily to quickly determine the viewpoint implied by a match
between the model and the image, not to select valid matches.

Lamdan and \Volfson[71] similarly vdescribe a system that samples the viewing
sphere and then creates a separate model for each view. Again. this implicitly samples
the 2-D set of images that a 3-D model can produce. Then. a 2D indexing scheme
based on invariants is used.

Breuel[17] also proposes an indexing scheme based on sampling the viewing sphere.
Breuel's system uses vertex features, making use of the angles of the lines that form
the vertices. In this work. the potential effect of changes of viewpoint on the angle
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of a vertex is determinied. This is used to bound the number of different viewpoints
needed to find all views of thle model that will be represented1 iii different t able buckets.
Trherefore, thle numtber of' t able entriies needled to dlescrib~e the Images that a group of
veirtices may p~rodluce c-an be bounded.

C lemenis and[ Jacolbs[32] also Imp~lemient an Indlexing sv, stemt based oii sampi~ling
the viewing sphlere Ini order to test tie potentijal speedups p)rovidled bY Indexing. This

systemi rep~resenits Imiages of lpoinit features in a lookupJ table.
Thiese ap)proachies poidt)\~e some of the inspiration for outi iuethod0(. ~i which we

represent all imiages of a mlodel created front all points on the viewing sphere(. usinmg
a represent at ion that is i nvariaint under atline t ransformiat ions. One of' thle mtamin
advantages of our approach. as a met hod of hash tab~le lookup is that we are alble to
rep~resenit a miodel's Images with two 1-1) lines, while previous app~roachies dleterminied
lie imiodels* potentital images by sampling the viewing sp~here. and implicit lY were

rep~resent ing a 2-I) maniifold of imiages corresponding to the 2-I) surface of tlie( viewing
sp)lerei'.

We c-an see some of thle adlvantages of our app~roachl froini some of the( rep~ort ed
results. Thomipsoni and Munid * 5 s~steiii requiiredl 2.500 t able entries to rep~resent tlie(

iiiiages of a pair of modlel vert ices. Clemens atio .Jacobs' system requiredl over 5.000)
table entries to rep~resent a group of five model lpoints. Laindami andl Wolf son rep~ort

samuplinig thle viewing sphere at a rate of every ten degrees. The space required 1by
our sy' stem is one, or two ordlers of magnlit ude less. This significant lv Increases thli
nuimbier of groups of miodel featutres thiat we can hope to represent tii a lookup table.
Moreover. our applroach extends gracefully to handle larger groups of mod0(1( feat tires.
withi modest additional space requirements. It is not clear how growthI in grouip size
wvill affect the space requiredl by ot her app)roaches: as grouips grow larger. more Images
imust be samp~Jledl because the chances are greater that some of the model fea t tures wI ll
be significant ly effect ed bY small changes iii viewpoint.

Also. our app)1roach allows uts to analytically construct a lookup table t hat is gnar'-
anteedl to b~e correct. Most of the sy' stemns described above uniformly samp~ledl the
viewing sphere, with iio guarantees ab~out how~ much inaccuracy this might hit rodltce
into the lookup t able. Bretiel was able to b~ouind this Inaccuracy iii the case where
0milv the( angle bet weeni two lines- was used as a mnodel featutre.

F ina~l y. we have p~resen1tedl a met hod of account ing for image error at lookup timue
that guarantees that we will find all matches tha~t fit a bounded error assumpt ion.
Most of t he above systems rely- on thle (hiscret izat ion of the index space to account for
error.

On tlie( other hiand. we have paidl for these advantages by using a more general
p)rojection transforma~tion t hat introdluces two more (degrees of freedom into the p~ro-

3 IBreiel [18 m]nentijoned explicitliy that a 2-1) uiaiifold is represented by this mnet hod.
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jection. This may be a liability if we (1o not require the added capability of recognizing
photographs of objects viewed from new positions.

XWe should also stress that while there are considerable I)ractical advantages to our
approach to indexing, the greatest difference between our ap)p)roach and prexvious ones
is more conceptuial. W\e have rel)hrased indexing as a geometric matching l)roblem
i)etween simple objects that we can analytically compute.

4.6 Conclusions

Aside from some smaller ipll)lementationl points. there are two main conclusions of
this chapter. First. we show that we can careftullv understand the effects of error on
point feature matching. We have shown tlie precise effects of error on matching four
planar points with alignment or geometric hashing. and then shown how this can
also bound the effects ofi matching 3-I) objects under linear transformations. These
results therefore have relevance to tile implementation and analysis of a wide range
of approaches to recognition.

We can also see that understanding the effects of error matters. In some indexing
systems (Lamdan. Schwartz and Wolfson[70]. Thompson and Mundy[1001, Lamdan
and i\'olfson[71]. Forsvt Ih et al.[44],) ad-hoc niethods are used to handle error. such
as counting on the use of discrete cells to match images and models that are a little
different. In the case of point features we caii see how inaccurate that can be. I'sing
discretization to handle error means effectively putting a fairly arbitrary rectangle
about the image- in index space, and matching them to all models that map to
somewhere in that rectangle. And the rectangles are all the same size. In the case of
four points, we can see that the true error regions are usually elliptical, and that their
size and orientation can vary quite a bit. When there are more than four points. the
variation in affine coordinates of different points can also be great. This means that
an arbitrary treatment of error is likely to miss many matches. or to be so sloppy as
to greatly reduce the effectiveness of indexing.

W\re also see experimentally that indexing can be of great value when grouping
provides us with large collections of image features. But we see that indexing is of
quite limited value when small groups of image features are used. It is esl)eciall] in
those cases that a careful treatment of error is needed to squeeze all the power we
can from the indexing system.



118 CHAPTER 4. BUILDING A PRACTICAL INDEXING SYSTEM



Chapter 5

Inferring 3-D Structure

5.1 Introduction

In tlhe int roduct lon to this thesis we describ)ed two possil)le approaches to indexing. In
the approach that we have pursued so far. we characterize the set of 2-D images that
a 3-D model can produce. and then match between 2-D images. A second dpproach
is to derive 3-D information from a 2-D image and perform a comparison in 3-D. The
advantage of such an approach is that since the 3-D structure of a ,iodel does not
depend on the viewpoint, only a single representation of the model is needed. In this
chapter we examine the extent to which we might hope to rec-over 3--D information
about an image of point features.

We need not derive explicit 3-D information about the scene to gain the advantages
of a 3-D comparison. If we can derive some viewpoint invariant property of the scene
from an image. we have implicitly determined something about its 3-D structure.
because we have determined something that depends only on this structure, and not
on the viewpoint. Therefore. invariants can be viewed as a representation of the 3-I)
scene information. So when we discuss invariants in this chapter. we are at the same
time discussing 3-D scene reconstruction.

In chapter 2 we showed t ha~t there arc no complete invariant functions for general
3-D objects. Recall that a complete invariant function is a function of a single image
that captures all the information about the model that could effect the images that
it call produce. This tells us that indexing by recovering 3-D information, implicitly
or explicitly, can never make use of all available information. and call never be as
complete as indexing by characterizing a model's images.

However, the advantages of performing indexing using 3-D information are poten-
tiallvy great, because of the space savings and conceptual simplicity gained by using
only a single 3-D model. So it is worth considering whether we can do any useful
indexing in this way. There are several ways in which we might try to get around
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lie results of (hap1 te(r 2. First . we miiglht 'onisider allowing our inivariant funictions.
which ilipici~dt lv (cont ain 3 -D I) ii oriiiat l011. to inltriodluce error's. W\e first show that al-

lowinig flase posit iv\e error., is of no liel p. Thuat is. we show that there are no invariant
luiict olls at all. eveli onles which mlight thbrow away, somle of thle usefu iiin iorunat ion1
III thle imiage. Ihlet we conid~( er whet her Invariant functions" Ilay'N exist if, we allow
false niegativye errors. t hat is. if' we allow funci(t ions that occasionally *viiuat cl anl Image
to a miodlel that could not have producedl it. W\e show that whieui smiall inumb~ers of
false ziegat i yeerr .r all owedl. t heriv are still no invariant funct ions. These results
telf us that we niav not Infer 3~-1 In formnat ion front p)oint feat ures even if' we allow anl

occasional miust ake.

Weý lhen consider whet her we inight find Invariant Inuict ionls foir Iilmit ed li brar'ies of,

models. Weshow under whfat circuimstanices a fpart icular set of' modlels miight give rise
to anl invarianit. Finally, we tumn to uion-accidental properties. These are Ind~ividutal

l l~~r es of anl imagre t hat aire unlikely- to occur by chance. It has beeni thloughit thfat
these special p)ropert ies offer a inet hod of Inferring 3-DI st ructutre when t hey' occiir.
W\e show that in the case of point teat ures. however. these p)roperties are of limi1ted
valume.

A num11ber of researchers have conisidlered methods of inferring 3-D structuire from
a 2-I) image t hat contains richer features than the simp~le p)oints that we anal 'yze. Of
course there is anl extensive literature on stereo andh motion understanding. situnat ions
w\here more than one Image of the scene is available. There has also beenl work onl
(herivinig 31-D Informnat ion fromn the shading or text ure of a single image. And there
has been extensive wvork onl determining 3I-D structure from line drawings. These
dIrawings usuallv contain either connected line segments or closed curves, the Idealized
outpfut of anl edlge detector that would1 locate all scene (discontinuities without gaps or
error's. Some of this work onl line dIrawings has (lerived qualitative 3-D information
fronm Images. for examp~le byv parsing lines into 0o)jects. or determining thle meaning
of each line (is a line ali occluding contour or an orientation discontinuity? does a

line indicate a convexity* or a concavity in .3-D'?). Early' work along these lines w~as
(lone by Guznian[51]. Huffman[5-51. (lowes[33]. and XValtz[1O8]. More recent work
is dlescrib~ed in lxoeiiderimmk and Vaii Doorn[66]. Malik[751 and Nalwa[S6]. W~e will
dliscuiss iii more (letail work t iit makes inferences using nuon -accident alI pr1opert ies.
including t hat of Binford[1 1]. IKanade[64]. and Lowe[7:3] .Andl while some of this work
makes definite inferences from an imiage. other work, realizing that many different 3-
D sceiies are compatible with certain images. at~tempts to find methods of preferring
some interpretations over others. This is (lone. for example. in Brady and Yuilhe[16].

NIarill[SO]. and Sinha[97].
When so much work- has been expended in examining the p~roblem of scene r'econl-

struct ion in a more comp~lex image, we must, explain why we consider this problem for
Images of just p)oint fea, tires. One reason is that much of the above work assumes ide-
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alized input, especially in assuming curves without gaps. When working with broken
curv'es. it may be more useful to see what can be inferred from more isolated features.
as we do. Second. time above work has achieveed only vpartial success. It ma"y be useful
to more thoroughly examine a simpler kind of iniage. And some of our results imay
be extended to more complex domains. In particular. our analysis of non-accidental
properties is easily applied to properties of lines such as parallelism and s nimet r\.

The primary conclusions of our work is that there are strong limitations on the
3-D inferences that we can make from a single image of point features. These results
strengthen the sense that the representations of a model's images derived in chapter
2 are indeed optimal. \\Vhenever we show that we cannot derive viewpoint-invariant
information about a model, we have shown that it is not possible to represent that
model with a single point in some image space. which would capture that viewpoint
invariant data. Our results also provide greater insight into non-accidental properties
as an approach to recovering 3-D information about a scene. It remains to be seen.
however, to what extent stronger 3-D inferences can be made when we have richer
image information available.

5.2 Scaled Orthographic and Perspective Projec-
tion

5.2.1 There Are No Invariants

In chapter 2 we showed that there are no non-trivial, complete invariant functions
of images. In this section, we show that there are no non-trivial invariant functions
at all. This is equivalent to showing that there is no mapping from images to image
space for which every model's manifold is a point unless image space consists of a
single point to which all images are mapped. We first present a proof from Clemens
and .Jacobs):32] which applies only to scaled orthographic projection, and then a proof
discovered by Burns, Weiss and Riseman[24] and by Moses and Ullman[84] which
applies to all projection models. The results of Clemens and Jacobs[31] and Burns,
\Weiss and Riseman[22] appeared simultaneously. The work of Moses and Ulhlan[83]
appeared later. but was performed independentlv.

Following Clemens and Jacobs[32] we proceed by first considering the case in
which models have four points. If an invariant function. f. exists. we can use it to
partition this set of models into equivalence classes. If f is an invariant function.
then it assigns the same value to all images of a single model. We may therefore
speak unambiguously of f assigning a value to the model itself. We then say that
two models are equivalent if and only if f assigns them the same value. Clearly two
models will be equivalent if they produce a common image. If f partitions the models
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into a trivial equivalence class where all models are equivalent. this means that f is
a trivial invariant function which assigns the same value to all images.

\,X, now show that any two forn-point models. nit and m, are equivalent. We
proceed by showing that they are each equivalent to a third model. Let (ll) dlenote
the planar model with affine coordinates (1. 1). Recall that the atfine coordinates of
point in a set of planar points are its coordinates when the first three planar points are
used as a basis, and that these coordinates are invariant under affine transformat ions.
Theorem 2.3 tells us that the planar model nill) can produce anl. image of four points
that has affine coordinates (1. 1). We know from lemma 2.5 that tit can produce an
image with afline coordinates (1. 1). Therefore this image will be produced by both
in(l.l) and ml, aid( the two models are equivalent. Similarly, 1 ~i.1) is e(quivalent to
m-2, because. again by lemma 2.5, it may produce aii image with affine coordinates
(1. 1). So tin and n12 are equivalent.

Suppose now that models ha-'e more than four points. Let till be a model with
ii points. W\e can use a similar technique to show that tll is equivalent to any
planar model with it points. Pick some such planar model, with affine coordinates
((14 34. ... o. .,J). We'll call this model p,. Then we know that there is some viewpoint
from which Ph produces an image with affine coordinates 04. 34, and some other affine
coordinates we call o.5 3.5 ... n'. 3,. Call a planar model with these affine coordinates
P4. tit is equivalent to p4 because because tit can produce an image with the same
affine coordinates as p4. and p4 can produce all such images, by theorem 2.3. We now
create another model, ni.5, which is the same as p4 except in its fifth point, which is not
coplanar with the others. n.5 is equivalent to p4 because we can view it to produce
affine coordinates ",. in its fourth point, while all its other affine coordinates
always match those of P4. Similarly, nim is also equivalent to a planar model pis that
has affine coordinates (04. 34. I5, 35. C,3.o'.3,'. So in is equivalent to P4 Which
is equivalent to 1n 4 which is equivalent to p5. We can continue this process until we
have a chain of equivalent models which connects m1 to p,. Then, since we have
shown that any 3-D model is equivalent to any planar model. we may conclude that
any two 3-D models are equivalent to each other. Figure 5.1 illustrates this argument.
This means that any invariant function that applies to all possible models must be
trivial. By the way, the above proof assumes that points of tit are not coplanar. but
removing this assumption introduces no special difficulty.

We now present the related proofs of Burns, Weiss and Riseman[24] and Moses
and Ulhnian[84]. because they provide a somewhat different way of thinking about the
problem than the one described above. and because they are more general, applying
to perspective projection as well as scaled orthographic projection. As the two proofs
are similar. we describe them together here.

Given two models of ii points each, il and Mn2 , we construct a chain of inter-
mediate models. mn', ... ni' such that each adjacent pair of models in the sequence
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Model 1 Model 1' Model 2' Model 3' Model 4' Model 5' Model 2

0 "

00
0 0

6 yj0* 0 0 0 0

* 0 0 0

* 0

* 0 2 1 0 0 0

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

Figure 5.1: The two models on the left and right are connected by a set of inter-
mnediate models. We form an arbitrary planar model, model 3'. and show that each
model is equivalent to it. WVe begin by taking an image (image 1) of model 1 whose
fourth point has the same affine coordinates as the fourth point of model 3'. Then we
create model 1'. a planar model identical to image 1. Model 2' is identical to model
1' except for its fifth point, which is any point not coplanar with the others. Then
both models 1' and 2' can create image 2, which is the image of model 2' that has
the same affine coordinates as model 1'. since model 2"s fifth point may appear with
any affine coordinates. For this reason, model 2' can also create an image in common
with model 3'. We connect model 2 to model 3' in a similar fashion.
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11, m11 .... 111/. n 2 can produce a common image. Then all the models are equivalent.
and any invariant function is trivial.

To construct this sequence we first show a simple lemma.

Lemma 5.1 If two modfhs ar( idtntical txcfpt for a sinqgh point. th(t tluy product
a courn Wno ira•q from .lo' I'if'point.

Proof: To find this viewpoint, we just orient the two models so that all their com-
mon points are in the same place. A line connecting their two different points then
describes a possible viewpoint. When seen from that viewpoint, the points that are
different in the two models line up in the same place in the image. All the other
model points coincide in 3--D space, so they appear in the same places in the image
regardless of viewpoint. This proof applies equally to orthographic or perspective
projection. because in either case. given a line through two points, we can view the
points along that line so that, they create the same image point. 0

Now we can create a sequence of intermediate models easily. Let III be identical
to In in the first n - i points, and identical to m2 in the last i points. Then each
model in the sequence differs from the previous one in only a single point, because
M' differs from nII in only the last point, mi differs from ni-1 in only the i'th point.
and m', is identical to In 2 .

These results tell us that allowing false positives in our representation will not
allow us to produce invariants, for in these proofs we allow a model to match an
image that it could not produce. So we cannot create an image space in which each
model's manifold is O-D. We now ask what is the lowest-dimensional representation
possible when we allow false positive errors? Since a model's images are continuously
connected, then any continuous mapping from images to image space must map these
images to a continuously connected manifold of image space. If this manifold is
not a single point., then it must bi- at least one-dimensional. We have already seen
such a one-dimensional represenitti.,i in chapter 2. If we just consider the set of
o coordinates of the images that - model can produce, we know that each model
corresponds to a 1-D line in this n space. Before we spoke of decomposing an image
space into an a subspace and a 3~ subspace. but we may also consider a space as the
entire image space. To do this introduces false positives because two models might
produce images with the same set of a coordinates but with different 3 coordinates.
But we have a non-trivial representation in which each model's manifold is 1-D. and
this is the lowest dimensional representation possible when we allow false positives.

5.2.2 No Invariants with Minimal Errors

The purpose of this section is to strengthen the results of the previous section. The
proofs that there are no invariants depend on the assumption that any invariant
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applies to all models, and produces no false negative errors. This is a compelling
result because there has been a great deal of work done iII mathenmatics on invariants
that meet these conditions. \Ve now know that this work wvill not apply directly to
the problem of recognizing a 3-1D object from a single 2-1) image. However, this result
does not prove that there call be no useful functions that are in some sense almost
invariant. To address this question we ask what happens when we allow all kin1d- of
errors, but such a small num11ber of errors that they are of no practical significance?

We alert the reader to the fact that this section my be somewhat slow going. and
that it can be skimmed or skipped without loss of continuity.

\We ask two questions: will accepting some errors allow us to find an invariant
function? and will it allow us to represent each model at a single point in some
image space? When no errors are allowed, we showed that these two questions wele
identical. This is no longer obvious when we allow errors, so we treat the two questions
separately. \Ve must also explain what we mean bY a small number of errors. So we
begin by defining these two questions more carefully. Then we show that when we

allow errors. the existence of O-D representations of models still implies the existence
of an invariant function. Then we show that even with a small number of errors
allowed, there is no such invariant function. and hence no such O-D representat loll.

First of all, we make the following definitions.

Definition 5.1

"* As bcfore. let A4 be the set of all models, lht I be the set of all ;magfs. and lft
f be a function from imag(s to an image space. S. And let T b( the set of all
legal projections from M-I to 1. Our proofs will apply equally to pe rptctti' or
scaled orthographic projections.

" L(t g be a function from A4 to S that uwe will specify later.

"* Let gf(i) = {mlg(m) = f(i)}. That is. gf(i) is the set of all models such that
g maps these modfls to the same point in S to which f maps i.

"* Let p(i) = {filt 1 T such that t(m) 4. That is. p,(i) is the s(t of all models
that can produce image i.

"* Let h(m) be a function from A4 to all subsets of T. That is. the function h
describes a particular set of vie u's for each model.

"* Let TA-I stand for the set of all pairs of transforms and models. That is, (t.mn)
is a typical member of TM4. Let T",i indicate the set of all (t.m) E T-4 such
that t(m) = i. Therefore. TM4 = UEi T-Al.
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\We will ask whether allowing an infinitesimal nuniber of errors might improve our
indexing system. This notion can be made more formal using basic concepts from
measure theory, but it should he briefer and clearer to present these proofs using
simple intuitive notions. For example, we might allow a function. instead of being
invariant for all models, to be invariant for all but ain infinitesinmal nunlber of models.
It ,A4' is a subset of the set of all models. M, we will say that M4' is injindihsital
with respect to A4 if. when selecting a model. ti. from .A4 at random, there is a
0 probability that ti E Al'. This definition implies that we have some probabilitv
(list ribut ion for the set of models in Ml. \Ve will assume that the points of each
model are chosen independently and uniformly from a cube of fixed size. We cali
assume similar d(istrihlut*ions for images and transformations that allow us to define
intinitesimal subsets of them. As an example, let MI be the set of models with 5
points. and let ,M' be the set of planar models in Ml. Then ANI' is infinitesimal in
M. On the other hand. if M' contains all but an infinitesimal set of NI's members.
we will say that MI' is almost all of .I.

In practice, our choice of a prob)ability 'list ribution on the models, images and
transformations is not important to the proofs that follow. \\'e oily rely on the
following properties of the distribution that we have chosen.

1. If T' is alnost all of I. then A4' is almost all of A4. if we define A4' Ji{l E
.\l13 E "T such that t(m) E I'}. That is, if we have a set of almost all the
images. then the set of models that could produce these images is almost all
thle models.

"2. Similarly. if Al' is almost all of Al. and h is defined so that Vm E Ml', h(m) is
alnost all of 'T. then 2 {i]3in E ,l'. I E h(in) such that i =I(in)} is almost
all of ". That is, if we have a set of almost all the models. and for each model
we consider almost all the viewpoints of that model, we will produce almost all
the images.

3. If AV' is almost all of Al and T' is almost all of T then T'A,' is almost all of
T'".

4. Suppose TAI' is non-infinitesimal in TA,, and let T" be the set of all images
such that i I' if and only if TAT' l T7,i is non-infinitesimal in T.,". Then
T" is non-infinitesimal in ". This is really fairly simple, in spite of the obscure
definitions. It just means that if on the one hand there is a non-zero probability
that a randomly chosen model-transfornmation pair is in 1)4', then if we ran-
d(omlv select. an image there will be a non-zero chance that a randomly chosen
model-transformation pair that can produce that image will also be in TMl'.
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All of these conditions essentially just depend on the fact that the probability
(list ribution we have chosen assigns a 0 probability to select ing what itit tit ivelv seems
like an infinitesimal set of images or models or transformatioiis. For example. we do
not want any one image to have a finite probability of occurring.

We will now ldefine our two questions for the case where we allow errors to occur
with only infinitesimal probability. If a result leads to an indexing method in which
the set of situations that gives rise to an error is infinitesimal, this means that in

practice where we have only a finite number of models and images, such errors will
never occur.

One might ask if this condition is too strong. W~e might be satisfied with a systeni
in which errors occur only rarely. instead of never. However, there are two reasons for
examining the strong requirements described here. First. it is easier to show negative
results about these requirements than about looser requirements. while these results
still help to strengthen our understanding of the difficulty of fulfilling even looser
requirements. Secondly. we are still considering the idealized case where there is
no sensing error. One may have the intuition that any approach that allows for real
errors in this case is likely to produce a great many errors when we account for sensing
uncertainties.

Question 5.1 Does there e.rists some X' C I. wh(•l Xt' is infinilesimal in 1. and
somt y and some f. such that: Vi e 1. i ý Xt. the following two conditions hold:

1. gf(i) is infinitesimal in M-I

2. gf(i) n p(i) is nearly all of p(i)'.

This question asks whether we can make one entry in image space for each model
without having problems on a greater than infinitesimal set of images. The function
g describes these entries by mapping each model to a point in image space. while .f
maps the images to image space. gf(i) tells us which models are mapped to the same
place in image space as is the image i. There are two ways we can have problems with
an image. given as the two conditions above. First, if the image is matched to all
the right models, but this matching is unhelpful because it produces too many false
positive matches. In the absence of error an image is geometrically compatible with
an infinitesimal subset of models; that is, the probability that an arbitrary model
could produce an arbitrary image is zero (see Clemens and Jacobs[32] for further
discussion of this). So condition one states that our indexing system should reflect
this by matching an image to an infinitesimal set of models. Second, a problem arises
if the image is not matched via image space to almost all of the models that could
have produced the image. This seems like a reasonable way of defining a map to
image space that introduces few errors. If such an f and g existed, we could use them
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for indexing, and for a randomly selected image of a randomly selected model. with
probability I our indexing system would match the image to the right model. and to
no other models in any finite, randomnlv chosen data base of models.

We now define question two:

Question 5.2 Do~s 31 C M. wh~r V is infinid(hitnal in M. and 3f.h such that
th( following tu,o conditions hold:

1. Vm E MI. in 4 Y thein h(m) Is alinost all off. and Vt, t' E h(m) thtn f(t(in))
f(W'(,I,))

2. f is non-triivial in th( followin9g sens. Thef £xist I' and I", two non-infinitsiinal
.subs(ts of I. such that, VPi' I' and Vi" E I". f(1i') $ f(i") ?

This question asks whether there is a -nearly invariant" function. f. So we say
that the function might not be invariant for an infinitesimal subset of models. Then
the first condition above says that for each remaining model, the function must be
invariant for almost all images of the model. That is, when we view the model from
almost all possible viewpoints, the function doesn't vary over all the images that are
produced. The second condition requires that the function be non-trivial in the sense
that it cannot be constant over almost all images.

WN'e prove that both of these questions must be answered negatively. To do this,
we first show that if question 5.1 is true, question 5.2 is true. Then we show that
question 5.2 is false.

WXe begin by making a couple of definitions based on the premises of question
5.1. First, we will say that f is either corr(ct or incorrelct for a particular element
of TAM. We say f is correct for (t. in) E TM if *f(t(m)) = g(m). and incorrect
otherwise. That is, given f and g. we can tell for a particular model, and a particular
transformation, whether f and g will map the model and its image to the same place
in image space, resulting in correct indexing. We also define TA4' to be the subset
of TM4 for which f is incorrect. We define T.M' to be the subset of TMi for which
f is incorrect.

Given the assumption that X, f, and g satisfy the conditions of question 5.1, we
show that we can satisfy the conditions of question 5.2. Let h be defined so that
h(n?) is the set of transformations for which, together with m. f is correct. That is.
t E h(m) if and only if f(t(m)) = g(m). Also, let f in question 5.2 just be the same
f that worked in question 5.1. Finally, let Y be the set of all models for which f is
not constant over almost all transformations. That is, m E Y if and only if h(?n) is
not almost all of 7. Then we must show three things to establish question 5.2.

First, we must show that for any m ý Y, h(m) is almost all of T. This follows
immediately from the definition of Y. Second, that f is non-trivial, in the sense given
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in question 5.2. If this were not true. f would be constant over almost all images.
and. for auv of these images. gf(i) would have to include almost all models.

Third. we must show that V is infinitesimal. If V were not infinitesimal. this
would mean that for a non-infinitesinmal set of models. there are a non-infinitesimal
set of transformations,. such that f is incorrect on these niodel-transformnauioni pairs.
This means that TW'. the set of incorrect nlodel-transforniation pairs v, lbe
non-infinitesimal as well. Since TA-4' is the union of all T.Vi, if TA-I' 1- uo
infinitesinial in T"./ then there must be a non-infinitesinal set of T , V' that are
all non-infinitesinmal in the corresponding TA-I,. Therefore, since X is infinitesimal.
there must be some image, i ý X such that T,4W is not infinitesimal in TA-,I. That
is, there nmust be some image beyond the ones we expect wrong answers fromn, for
which we still get wrong answers oil a non-infinitesinial subset of the set of model-
transformation pairs that produce that image. This will mean that we will not match
the image to almost all of the models t hat could produce the image.

n\e now prove that qtwstion 5.2 is false.
N,'e make two definitions. If two models have the same number of points, and are

identical except in one point, we will call themi n~ighbors. A n ighborhood is the set of
points that all differ from each other in only one point. That is. if we fix all bil one
point in a model, and let the last point appear anywhere. this defines a neighborhood.
It should be clear that a model with n points is in n different neighborhoods.

Our strategy now is to extend the set of excluded models. 1', while keeping it
infinitesimal. We will extend it to the set P'. then we will extend P" to be P". For
any model not in Y". we know that f is constant as the model is viewed from almost
any viewpoint. We will then show that f has the same constant value for any two
models not in P", which means that f is constant over almost all images.

Let X\ stand for the set, of all neighborhoods. Let N' stand for the set of all
neighborhoods in which a non-infinitesimal portion of the models are in '. That is.
if n' E A` this means that n' V is non-infinitesimal in n'. We now want to show
that the set of models in all the neighborhoods in A"' is infinitesimal in .11. Each
model in Y can only appear in n different neighborhoods. Since each neighborhood
contains an infinitesimal portion of the models. it is possible for some neighborhoods
to be dominated by models in '. But overall. there can only be an infinitesinial set
of neighborhoods, out of the set of all neighborhoods, for which a non-infinitesimal
portion of the models come from '. To make this more concrete, suppose we randomly
select a neighborhood (by randomly selecting a model with n - I points), and then
randomly select a model in that neighborhood (by randomly selecting the n'th point).
We know that the probability of this model belonging to Y is zero. That means that
the probability must be 1 that once we have selected the initial neighborhood. there
is 0 probability that we will select a model in that neighborhood that belongs to the
set V. This is just another way of saying that N' is an infinitesimal subset of N,
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and so all tihe neighborhoods in .\' can together contain only all infinitesinal set of
models. \Ve now define Y' to be the set of models that call be found in N.

\We would now like to show for any two models that are not in P" and that are
in the same neighborhood, call the models it, and 111 2 and the neighborhood t)-.
that f has the same value both for the images created when ti is viewed %w hi an\
transformation in h(nin) or when m 2 is viewed with the transformations of h(in12).
W\e can not (10 this by just claiming that the two models have all image ill ('o0n1on.
Tile two models differ in one point, so there are only- all infinitesimal set of viewpoints
from which it, produces all image that 1112 can also l)roduce. and it coul(l be that
none of these viewpoints belong to h(ml), However, since t(i1) contains almost
all viewpoints, we know that inml will have an image in common with alhost all tile
models in it*. So one of these models must have anl image ill common with 1112,

unless it happens that the allowable viewpoints of almost all the models in it' are
constructed so that none of them can produce an image ill common with 1112. This
can happen. But only for an infinitesimal subset of it*. Therefore. we create the new
set. P" which contains all models in P. and all models that belong to a neighborhood
in which tiley\ do not share an image with almost all of their neighbors. )" will still
be infinitesimal. And now, if we assume that 11+, and ni12 do not belong to P". then
we know that they must each share a legal image with almost all their neighbors. It
particular there must be a neighbor with which each shares an image.

Finally. if we take two models that do not belong to tile same neighborhood. we
can create all intermediate sequence of models. in which all the models in the sequence
differ by one point. and so they do share a neighborhood. This tells us that .f will be
constant over all images of all models, in, as long as in ý Y" and the image is formed
by a transformation in h(m). Since f is constant for almost all images of almost all
models, it must be constant for almost all images.

We have therefore shown that even if we allow an infinitesimal number of errors
to be made, there can be no invariant functions and no indexing performed using O-D
manifolds for each model. Moses and Ulhlnan[84] have addressed this question from
a different perspective, and. under a stronger set of assumlptions they show that any
invariant function must produce a much larger set of mistakes than we have consid-
ered. Collectively. this work makes it seem unlikely that we can produce invariant
functions by excluding a small set, of uninteresting situations from our domain.

5.3 Linear Transformations

\e now focus on linear transformations. In chapter 2 we showed that when this
transformation is used, the images that a model produces correspond to a plane in
affine space, which is decomposed into lines in a and .3 space. This result will make
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it iiiuch simpler to determine under what circumstances ani invariant funict ion exists.
because we can tell whet lr two models produce a common image b\ seeing whet her
their planes in atline space intersect. \We begin by allowing false positive errors. but
no false negative errors. iii t hat case there are no invariants for general models. b Il we
consider whether a less general librarv of models might produce an invariant ftuct ion.
\\e show that if there is an invariant function, the set of allowable objects IntIlst IbV
very restricted, \We then consider the case in which small number of false iegativ'e
errors can be made.

5.3.1 False Positive Errors

When we consider a linear transformation. and allow only false positive errors. then
there cani be no invariants for general 3-l) objects. Our proof of this for scaled
orthographic projection applies equally well to linear transformations. However. we
begin by introducing a simpler proof for this case. This proof also illustrates some
general principles that we can use to determine, foi any specific library of models.
whether there is an invariant function.

Previous proofs that there are no invariants relied on connecting any two models
with a sequence of intermediate ones which all share an image. \Ve can present a
proof that requires only two intermediate models. Sul)pose model in, corresponds to
the two liles, a, and b, in o-space and .1-space respectively. Similarly. suppose model
1112 corresponds to a2 and b2. Then there are an infinite number of lines that intersect
both al and a 2 . Choose one of these, a'1. Choose b' as any line that is parallel to a'1.
and intersects b1. then there is a model, in' that corresponds to the lines (a'. b' ). m'

has an image in common with mn1 . since (i intersects a'1 . and bI intersects b'1. we may
thei construct in' and its lines. (a', b'), so that V2 intersects b'1 and b2. and so that

a' passes through "ie point where a' and a 2 intersect. So in' will have aii image ill
common with rn' and 1n 2 . This is illustrated in Figure 5.2. Therefore. any invariant
function must have the same value for any image of any of the four models.

This proof shows us in general how to tell whether a particular library of objects
has a possible invariant function. As Moses and Ullman[84] point out. there will be
invariant functions for a particular set of 3-D models if the models can be divided
into non-trivial equivalence classes. where two models are equivalent if they have
all image in common, or are both equivalent to another model. From our previous
work, it becomes easy t~o form these equivalence classes for a particular set of models.
because we can tell that two models produce a common image if their corresponding
liles in a-space and in 3 -space intersect, that is. if their 2-D planes in affine space
intersect. Therefore, there will be a. non-trivial invariant function if and only if the
planes that represent our models in affine space do not form a completely connected
set of images.
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both intersect the models produce a common image. So we can see that. the two
constructed models link the two original models with a series of common images.
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Figute 5.3: This figure illustrates the fact that when modls consist of five points.
the images they vproduce are linked into a continuous set unlqs all the height ratios
are the same. and hence all the lines to which they correspond ar( parallel.
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A\n interesting special case in which to see this is that of models containing five
points. This is the smallest group of points that call produce invariants. because
in general any four model points can appear as any\ four image points under a lin-
ear transformation. Most systems based on invariants have used the smallest possible
model groups, in order to linit the combinatoric or grouping problem involved ill con-
sidering all possible image groups (this is true of Lamdan. Schwartz and WVolfson[70].
Forsyth et al.[44]. and Van Gool. Kenpenaers and Oosterlinck [106]. for example). A
set of model groups of five points will each produce a pair of lines in 2-D a-space and
3-space (see figure 5.3). Furthermore, recall that these two lines will have the same
slope, which means that two different models will produce lines that are either paral-
lel in both spaces. or that intersect in both spaces. Therefore, an invariant function
for groups of five points is possible only when all lines produced by all models are
parallel. For example, if one model produces lines not parallel to the others, it will
have an image in common with each of them. implying that the invariant function
nmust be constant over all images produced by all models. The lines produced by all
models will be parallel only when 7-5 , (see equation 2.1), is the same for all models.
that is. when the ratio of the height above the model plane of the fourth point to the
height of the fifth point is always the same.

\Vhen models consist of five points, only an infinitesimal subset of the set of all
possible models will give rise to an invariant function. This is not true for models
with more points. Here we give an example of a function that will be invariant for
a greater than infinitesimal set of possible models in the case where models have
six points. This function will be defined by an hourglass shaped region of a space.
That is, the function will give one value for an5' image with a coordinates in this
region, and a different value for any other image. (Since we are allowing false positive
errors, we may consider a function that ignores the fi coordinates of the images.
Such a function cannot distinguish between two models that produce the same a
coordinates but different 3 coordinates). By an hourglass shaped region. we mean.
for example. the section of a-space formed by all lines that intercept the 0 4 = 0
plane over some disc. and which are within a few degrees of being orthogonal to
this plane. Figure 5.4 illustrates this. If we consider the set of possible models that
intersect a bounded portion of a-space, then the set of models whi'h correspond
to lines completely inside this hourglass region is non-infinitesimal. There is also a
non-infinitesimal set of models that do not intersect this region. So we can pick two
non-infinitesimal sets of models for which this hourglass function is an invariant.

At this point we briefly return to the question of complete invariant functions, that
is. functions without. false positives, considering now restricted libraries of objects.
We consult our representation of a model's images as planes in affine space rather
than as lines in a space and 3 space. There is a complete invariant, function for a
specific set of models if and only if no two planes that correspond to two models
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Fi
Figure 5.4: An hourglass shaped region of a space.
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intersect without completely coinciding. If this condition is met, we may construct
all invariant function that assigns a common value to all the images that fall on a
model's plane of images, and assigns a different value to any two images that lie 'm
the planes of different models. Then, any model that can produce one image with
a particular value of the invariant function will be able to produce exactly the set
of images that have that value of the invariant function. If, on the other hand, two
planes intersect and do not coincide, then all images that either plane contains must
have the same value for any invariant function, but neither object, can produce all
these images, so false positives will occur.

We can now see that a specific set. of models can have an invariant function with
no false positives only if it is an infinitesimal subset of the set of all possible models,
because any set of non-intersecting planes is an infinitesimal subset of the set of all
planes that correspond to models. For example, if we have a restricted set of models
corresponding to a set of non-intersecting planes in affine space, this means that any
point in affine space can belong to only one of these planes, although it belongs to
uncountablv many planer ,hat correspond to some model.

5.3.2 False Negative Errors: Non-Accidental Properties

We now turn to a topic closely related to invariants: non-accidental properties (NAPs).
When used for recognition this is a property of an image that is true of all images of
some objects, and is false of all or almost all images of the remaining objects. Thus
an NAP can be thought of as an invariant, in which some false negative conclusions
are drawn, because images are not matched to models that rarely produce them,
With NAPs, the connection between invariants and 3-D scene reconstruction is clear.
NAPs in an image are used to infer 3-D properties of the scene that produced the
image.

The theoretical results that we have built up will allow us to draw simple and
general conclusions about the capabilities of NAPs, although the reader must always
keep in mind that our results will only directly apply to the case of a linear transfor-
mation applied to models consisting of point features. After reviewing some of the
past work on NAPs, we will show how to characterize the set of all possible NAPs as
particular subsets of image space. This will make clear that there are an infinite set
of possible NAPs, and that any one NAP is only valuable if we make specific assump-
tions about the particular class of object models that we are interested in detecting.
We then discuss limitations that exist in attempting to make use of an ensemble of
different NAPs.

The importance of some now commonly used NAPs was first discussed by some of
the gestalt psychologists, who noted that properties such as proximity or symmetry
tend to make a group of image features salient. We perceive a set of symmetric
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points in an image as a single whole, for example. Kohler[67] and Wertheimer[1 13]
summarize some of this work. Lowe[73] also provides a useful discussion of gestalt
and other early work on perceptual organization.

In computer vision, much work onl perceptual organization has focused on NAPs.
In general. an NAP is taken to be some property of the image that seems very
unlikely to occur by accident, and so reveals the presence of some underlying non-
random process. This idea is discussed and applied to a variety of vision problems by
Witkin and Tenenbaum(115]. It is suggested that NAPs be used to infer 3-D structure
from a 2-D image by Binford[11] and Kanade[64]. Kanade states the NAP criteria
as: "Regularities in the picture are not by accident, but, are some projection of real
regularities". He suggests, for example, that parallel lines in the image come from
parallel lines in the scene because, when scaled orthographic projection is assumed.
parallel scene lines always project to parallel image lines, while non-parallel scene lines
can project to parallel image lines from only an infinitesimal set of possible views.

Lowe[73] takes a more explicitly probabilistic approach to applying NAPs to ob-
ject recognition. He also selects as NAPs properties of a 2-D image that some 3-D
scenes will produce from a large range of viewpoints. We have mentioned that parallel
scene lines always produce parallel image lines, with scaled orthographic projection.
Similarly, if 3-D lines are connected, they will always be connected in the image.
Since we can not expect noisy images to produce perfect examples of these proper-
ties, however, we must also make use of approximate instances of parallelism or group
together lines that are nearby rather than connected. Lowe computes the likelihood
of such approximate features occurring by chance, assuming some random distribu-
tions of image features. Then a property is useful when its presence in the scene
guarantees its presence in the image; and is more useful the less likely it is to arise by
chance. Lowe is using NAPs to infer scene properties from image properties, and the
probabilistic machinery allows his system to determine the relative strength of each
possible inference, which in turn orders his recognition system's search for objects.

As described in more detail in chapter 1, Biederman[9] takes Lowe's work as a
starting point, and uses NAPs as the basis for a recognition system that attempts to
cope with large libraries of objects. Burns and Riseman[23] also incorporate NAPs
into a recognition system. NAPs have also been explored by Denasi. Quaglia, and
Renaudi[40], and they have been used in a stereo system by Mohan and Nevatia[81].

This past work on NAPs has left a number of open questions. First, although
past work has pointed out a number of examples of NAPs, they do not provide us
with an exhaustive list of possible NAPs. We can not tell, for example, whether there
are a small number of NAPs, or an infinite set of possible NAPs. We also lack a
basic geometric insight into NAPs. What is it about certain geometric configurations
that make them an NAP? We will provide a precise answer to this question. Second,
it is not completely clear whether the value of an NAP depends on the particular
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Figure 5.5: If an image corresponds to the point (0,0) in a-space, that means that
the last two points in the image are collinear with the first and the third points. This
is shown above, where the first three points are shown as dots, and the second two
points, shown as open circles, must lie somewhere on the dashed line.

distribution of object models that we assume. Witkin and Tenenbaum seem to suggest
that NAPs are useful only if we assume that processes in the world tend to produce
certain types of scenes. On the other hand, Lowe seems to suggest that the usefulness
of parallelism can be justified without assuming that models are particularly likely to
contain parallel lines. The view that NAPs are inherently important cues is bolstered
by the fact that the NAPs that have been used in vision are particularly salient,
perceptually. Parallelism, collinearity, and symmetry, for example, can jump out of
an image at the viewer. However, we show that this perceptual salience cannot come
from the non-accidentalness of these properties. An infinite set of NAPs exist, and
they are mostly not perceptually salient. We then show that NAPs are only useful
if we make special assumptions about the models that produce images. Finally, as
only a small set of NAPs have been used for recognition, one wonders whether one
could achieve greater coverage of a wider set of images and models by using a large
collection of NAPs. We will show that this strategy has significant limitations.

We begin by showing how NAPs may be considered within our geometric frame-
work. A feature of any sort may be thought of as a subset of image space. Image
space is just our representation of images, and the set of all images that contain a
particular feature will map to some subset of image space. To illustrate this fact, we
will consider the feature collinearity. Suppose that an image has five points, and the
fourth and fifth points are collinear with the first and third points, as shown in figure
5.5. Such an image will have (a 4 , a5) coordinates (0, 0), because the vector from the
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first image point to the fourth and fifth image points is entirely in the direction of
the vector from the first to the third image point. The image might have any values
for (34, 3.5). Therefore. we can describe this kind of collinearitv by pointing out that
all images with this collinearity will map to a single point at the origin of a space.
As another example, if the fourth image point is collinear with the first and second
points, then 34 = 0, while the other affine coordinates may have any values. Therefore
this collinearity is described by a line in 3 space. More generally. any image feature
is described by some region in an image space. If we consider features that are in-
variant under affine transformations, then these features may be described by regions
in affine space. We have given examples of features that may be even more simply
described by regions in n and 3 space. It seems reasonable to focus on affine-invariant
features. This amounts to assuming that the features we wish to use in describing a
photograph will be the same when we view the photograph from different directions.

A non-accidental property may be defined as a feature that some objects always
produce, and that other objects produce from only an infinitesimal portion of possible
viewpoints. The collinearity feature that we described with the point (0, 0) in a space
is one example of such a feature. Using the type of reasoning that Kanade or Lowe
did, we can show this by pointing out that an image with four collinear points can
occur in two ways. A model with four points that are collinear in 3-D would always
produce an image with this collinearity. Or. a model with four coplanar points could
produce this collinearity when it is viewed from a point within this plane, which is
only an infinitesimal set of viewpoints. From our perspective, we can see the non-
accidentalness of collinearity by noting that an image described by coordinates (0, 0)
in a space could be produced in two ways. A planar model with these a coordinates
would always produce an image with these coordinates. Or, a non-planar model
that, corresponded to a line in a space that went through the origin could produce
such an image. But in this latter case, the image with collinearity would be only an
infinitesimal point on the line that describes all the a coordinates of all the images
that the model can produce. These two analyses are equivalent. Note that if four
model points are collinear, then the five model points will be coplanar, and have a
coordinates (0, 0). And there is a simple mapping from the set of all viewpoints of a
model to the set of all images that the model produces.

However, our new view of NAPs as portions of affine space makes clear some
questions that were previously obscure. For example, what is the set of NAPs? Any
subset of affine space is an NAP if a plane that corresponds to any model is either
entirely contained in this subset of affine space, or intersects it in only an infinitesimal
part. For example, any point in a space corresponds to an NAP. Or. if our models
have five points, then any 1-D curve in the 2-D a space will also be an NAP, while
any 2-D subset of a space will not be an NAP.

Let's consider an example of a new NAP that we can discover in this way. Suppose
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Figure 5.6: If the image corresponds to (2,3) in a-space, the points must fall on the
two lines shown.

models have five points. The point (2,3) in a space corresponds to a new NAP. If
an image has this NAP, it means that the fourth image point falls somewhere on a
line parallel to the line connecting the first and third points. The distance to this
line is twice the distance to the second image point. The fifth point is somewhere
on another parallel line, that is three times as far away as the second image point.
Figure 5.6 illustrates this.

This new property is as much an NAP as collinearity: both can be produced
either by a planar model with the right a coordinates, which always produces an
image with this property, or by a non-planar model that passes through a particular
point in a space, and only rarely produces an image with this property. However,
our new NAP appears to have no special perceptual saliency. In fact there is an NAP
that corresponds to every possible image, the NAP formed by that image's affine
coordinates. Not all these NAPs could be perceptually salient. This addresses the
second question we raised above. The salience of properties such as collinearity or
symmetry can not be explained by their non-accidentalness as we have defined it. It
is clear that an NAP that is equivalent to a point in a or 0 space is limited. Using
such an NAP amounts to inferring that the scene is planar, and such an NAP can
only apply to an infinitesimal set of images, and hence to only an infinitesimal set
of models. Such an NAP may be useful, but only if we make assumptions about the
particular domain in which we are trying to recognize objects. Such an NAP is useful
if we know that some such image property really does arise a lot, for example, if we
know that real objects often do have parallel lines. That is, an NAP is useful when we
assume a special distribution on possible models in which sets of models that produce



5.3. LINEAR TRANSFORMATIONS 141

an infinitesimal set of images actually occur with finite probability.
NAPs need not be restricted to a single point in a or 3 space, however. If we

defined an NAP with a line in a space. this NAP would always be produced not only
by a set of planar models. but also by the 3-D models that corresponded to that
line. We might also hope to define a collection of NAPs that might together be more
useful than thev would be individually. So the question that still remains is whether
a more complex NAP, or an ensemble of NAPs might have some useful properties.
The limitations of either of these approaches is best understood by considering an
NAP as a commitment to infer 3-D structure from a 2-D image.

An image, in our domain, corresponds to a single point in affine space. Without
NAPs we can readily characterize the models that could produce this image: it could
be a planar model with the right affine coordinates or it could be a 3-D model that
corresponds to a plane that goes through the right place in affine space. When we
use an NAP, we are choosing to accept some of these models as plausible matches
to the image, while rejecting other models. If we have no prior knowledge about
the likelihood of different models being correct, then there is only one meaningful
distinction that we may make between the different models that could produce this
image. That is the distinction between the planar model that always produces the
same affine coordinates, and the 3-D model that rarely does I. This tells us that there
is no criteria we can use to infer that the image came from one 3-D object rather than
another. And it tells us that when we generalize the use of NAPs, we have a strategy
that says: in the absence of other clues, assume that the model is planar, and then
use an affine-invariant indexing strategy appropriate for planar models. This can be
a useful strategy for locating planar parts of 3-D objects. Lowe used it successfully.
However, it will never allow us to use information that comes from non-planar parts
of an object to do indexing.

Let us return to the three questions we asked earlier in this section. First. we have
a simple criteria that describes the infinite set of possible NAPs. Second, we can see
that if we have no prior knowledge about which model properties are likely to occur,
the only inference that we can reasonably make from an image is that a planar model
is more likely than a non-planar model to have produced it. This is a generalization
of such NAPs as parallelism or symmetry. But in generalizing these NAPs, we see
how weak they are to begin with. This does not mean that past work on perceptual
organization is not useful. Certain image properties are perceptually salient, and past
work has pointed out the value to recognition of understanding this salience and using
it for object recognition or for other visual tasks. However, we can not understand this
salience from its non-accidentalness alone. We must understand what 3-D structures

'This is a bit of a simplification. We could also show that the closer a model is to planar. the
more likely it is to produce affine coordinates like the ones in the image. This nuance does not, affect
the basic structure of our argdment, however.
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tend to occur in the world in order to explain why certain inferences about 3-D
structure from a 2-D image are more valid than others. If we do not want to be
stuck just inferring planarity we must look beyond the geometr" of our features for
regularities in the world that make certain features especially useful. Finally, with
regard to our third question, we have shown that as we generalize NAPs it becomes
clear that we do not have a viable strategy for recognizing 3-D objects, but only for
handling planar portions of these objects.

5.4 Conclusion

In order to draw together the work in this chapter and in chapter 2 we must return
to the themes that were laid out in the introduction to this thesis. We stressed the
value of grouping and indexing, and suggested that there were two approaches that
we can take to indexing. We can either try to characterize all the 2-D images that
a 3-D model can pioduce. or we can try to infer 3-D structure from a single 2-D
image. By understanding the best ways of characterizing a model's images, we have
provided ourselves with the tools needed to show the limitations of trying to infer
3-D structure from a single 2-D image.

In chapter 2 we derived an optimal, error-free representation of a model's images
as two lines in two high-dimensional spaces. In this chapter we have strengthened
that result, by showing that when we consider representations that introduce small
amounts of error we do not gain much. Small numbers of false positive and false
negative errors will not give us invariant representations. And non-accidental prop-
erties, which allow small numbers of false negative errors, although they may be used
effectively to index planar models, do not provide us with coverage over a wide range
of 3-D model libraries. This shows us that if we want to design an indexing method
capable of handling any collection of object models without introducing errors, then
the best representation of a model's images to use is the one developed in chapter 2.

At the same time, this representation has provided us with a simple geometric
interpretation of indexing that shows the limitations of attempts to infer 3-D structure
from a 2-D image. Such inferences have been attempted with invariant descriptions
in special domains, or with NAPs, which are properties that are invariant as long as
one ignores models which can produce them from only a small set of views. However,
in the absence of special assumptions about our model library, there is a symmetry
to this problem that precludes such inferences. An image is a point in some space, a
model may correspond to any line, so there is no reason to prefer any one line over
another. The only sensible inference about 3-D structulre from a 2-D image in our
domain is the inference that the model must correspond to a point or a plane in affine
space that includes the point that corresponds to the image.
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We must keep in mind two important limitations of this work, however. Our
goal has been to thoroughly explore a simple indexing problem. Therefore. we have
primarily assumed that models consist merely of points, and that we have no domain-
dependent knowledge. Our results might be taken to mean that no inference about
3-D structure is possible. and that no method of perceptual organization is to be
preferred over another. Neither of these conclusions seem true. We have meant to
show the limitations to using simple doInain-independent geometric knowledge when
performing perceptual organization or structural inference.

It is clear that we can infer more about 3-D structure if we assume that models
consist of surfaces, or if we have access to shading or texture clues. More importantly.
as in much of Artificial Intelligence, the limitations of domain-independent knowledge
provide an impetus for understanding the structure of our domain. Surely symmetry
is a valuable clue in perceptual organization because the world contains so much
symmetry. We believe that in general our work supports the view that to understand
images we must understand the regularities of the world that produces them. and
not just the geometry and physics of the image formation process. Researchers have
usually avoided this task, because it is difficult to formalize or to prove anything
about the regularities that happen to exist in our world. It seems much easier to
understand the regularities that must exist due to the laws of physics and the truttns
of geometry. Our goal in this chapter has been to show that while it is important to
reason about images, there is a limit to what we can conclude about images without
also incorporating a knowledge of the world.
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Chapter 6

Convex Grouping

In the introduction we presented an overall strategy for recognition that combined
grouping and indexing. But until now, we have focused only on indexing. We have
seen that to be effective our indexing system requires groups of six, seven or more
point features. It is not practical to consider all possible groups of image features of
that size. So to be useful, our indexing system requires a grouping system that will
select and order collections of point features that are particularly likely to come from
a single object.

It has long been recognized that grouping is a difficult problem, which perhaps
explains its relative neglect. Marr[77] said:

The figure-ground "problem" may not be a single problem, being instead
a mixture of several subproblems which combine to achieve figural sep-
aration, just as the different molecular interactions combine to cause a
protein to fold. There is in fact no reason why a solution to the figure-
ground problem should be derivable from a single underlying theory.

Marr recommended focusing on problems that have a "clean underlying theory".
instead. These simpler problems included shape-from-shading, edge detection, and
object representation. More recently, Huang[54] has stated:

Everyone in computer vision knows that segmentation is of the utmost
importance. We do not see many results published not because we do not
work on it but because it is such a difficult problem that it is hard to get
any good results worthy of publication.

However, in addition to its importance for indexing and for other visual processes,
grouping deserves attention because even partial progress can be quite valuable. A
grouping system need not fully decompose the scene into figure and background to
be useful. Far from it. Without grouping, we must perform an exhaustive search. If
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grouping collects together features that are more likely to come from a single object
than a random collection of features. than it will improve our search by focusing it.

Many recognition systems now work on simple images by using very simple grouping
techniques. Any extension in our understanding of grouping will extend the range of
images in which a grouping system can make recognition feasible.

The grouping work described in this chapter serves two purposes. First. group-
ing and indexing are interdependent: we cannot demonstrate indexing as part of a
fully functioning recognition system without automatically locating groups of point
features in an image. Second, we describe some concrete progress on the grouping
problem. We show how to efficiently locate salient convex groups in an image, and
we show that these groups may be used to recognize objects in realistic scenes.

There are many different types of clues available for finding portions of an image
likely to come from a single object, such as the distance between features, the relative
orientation of lines, and the color, texture and shading of regions in an image. Which
of these clues is most useful varies considerably from image to image, so ideally
they should be integrated together. to build a grouping system that can make use of
whichever clues are appropriate. In this chapter, however, we explore just one clue.
We show how we can efficiently form salient collections of convex lines in an image.
While in the worst case this is an inherently exponential problem. we show both
theoretically and experimentally that we can efficiently find subgroups in practice.
And we show that these groups are sufficiently powerful to support recognition in
some realistic scenes.

We have given less attention to some of the steps that are intermediate between
finding these convex groups and indexing with them. We present a simple method
for robustly finding point features, starting with convex groups of line segments.
We also present a simple method for selecting the most salient convex groups for
use in indexing. We need to combine pairs of these groups in order to have enough
information for indexing, but we have not developed a method of doing this, and so we
simply perform indexing using all pairs of salient convex groups. Our research strategy
has been to thoroughly explore one important aspect of the grouping problem, finding
convex groups. and then to hook this together with our indexing system in a fairly
simple way so that we may explore the interaction between the two processes.

After our exploration of indexing, we are in a much better position to explain
the interrelationship of grouping and indexing than we could in chapter 1, and so
we begin by showing why grouping is necessary for any recognition system based on
indexing. We then discuss the value of convex groups foiý recognition. We present our
method of finding convex groups, with a theoretical and experimental analysis of its
performance. Finally, we fill in the remaining pieces needed to connect this grouping
system to our indexing system, and demonstrate the performance of the complete
grouping program.
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6.1 Why Indexing needs Grouping'

We can make th" relationship between grouping and indexing clear by returning to
the combinatorics of recognition with point features. reviewing and extending th-
analysis given in chapter 1. In that chapter we showed how a simple recognition
strategy, alignment, developed problems of computational complexity in challenging
domains. We presented a formal analysis for recognition using point features. In
that case, for 3-D recognition from 2-D images, alignment involves determining the
object's pose using matches between triples of image features and triples of model
features. We will now show that in this domain, grouping and indexing together can
dramatically reduce our search. while either one individually is of only limited value.

Suppose that we have N image features. Af model features, and n points in a
group. Let s(n) again stand for this average speedup. that is, the total number of
model groups that could possibly match an image group of size n. divided by the
average number of model groups matched to an image group through indexing. S(71)
is the reduction in the amount of search required when we compare an exhaustive
search to one guided by indexing. We want to determine the number of hypothetical
matches between image and model features that we must consider when we take
various approaches to recognition.

Recall that with alignment we consider all possible matches between three image
points and three model points. Each such match allows us to determine two possible
poses of the model in the scene. The total number of such matches is approximately(N 3 Al 3 )beasthrar Ngrus(A'

3! Au e (N)image groups, (3) model groups, and 3! ways of
matching three image points to three model points.

The main implication of both the experimentally and theoretically determined
speedup factors that we found for indexing in chapter 4 is that a recognition system
based on indexing alone is not a practical alternative to alignment. First, indexing
using no grouping and large values of n is clearly not feasible, because ('N) image
groups will have to be explored, no matter what speedup is produced by indexing.
Second, for smaller values of n, it is not possible to attain significant speedup. in
comparison to the combinatoric explosion of matching all groups. If we try all combi-
nations of image and model features, the overall number of matches will be • ,,-

for n << M, N. since there are (") ()i)n! possible matches between image and model

groups containing n points, and indexing will weed out -.L of these matches. There-

fore, to determine the effect of incrementing n, we should compare "N, the increase

in the number of possible matches, to 3(,9-1) the increase in speedup. As we will see,

'This section is a modified version of material appearing in Clemens and Jacobs[32], and should
be considered joint work between the author and David Clemens.
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this comparison is unfavorable, and so it is more practical to use the minimum size
of n = 3. which does not make use of indexing.

For example. with an image containing 100 points and a model with 50 points.
there would be 1250 times as many matches of four points as there would be matches
of three points, and 1000 times as many matches of five points as four points. First.
from theoretical arguments. we found in chapter 4 that s(n) < j- 3 where j is the
size of a region describing the error in sensing a point divided by the size of the
image. This implies that < < j. For t = 5, and a 500 by 500 pixel image. j
is about 3200. Thus, even using this loose upper bound, increasing n from three
to four, or from four to five will only decrease the number of matches found bv
indexing by approximately a factor of three. Furthermore, we did experiments to
l)ound the possibilities of indexing by explicitly comparing image and model groups
with a least squares method, to find matches that any correct indexing system must
produce. From these experiments, we found that for scaled orthographic projection.
s(4)an
s(-) ranges from 46 to 270, and !() ranges between roughly 46 and 54. With a linears(4)

transformation, we found L-5 to be 1.100. These experiments do not contain enough
s(4)

data to draw firm conclusions about the exact speedups possible with indexing, and
we might produce better results by assuming smaller amounts of image error. But
we can see that the speedups provided by indexing will provide little if any overall
speedup in a recognition system that does not use grouping. Essentially, as the size
of our groups grow, the number of geometrically consistent matches between groups
of image and model points will either rise, or fall by only a small amount.

In this analysis, we are tomparing alignment and an indexing approach that gen-
erates hypotheses that we must then evaluate. We should note two important excep-
tions to this analysis. First, one might use more complex features than simple points.
such as vertices, curves, or collections of points. Indexing with such complex features
should produce greater speedups. In our view, such complex features are the output
of a grouping process, and in arguing for the value of grouping. we are equivalently
arguing for the value of complex, rather than simple features. Second, we note that
in the geometric ha-hing approach of Lamdan, Schwartz and Wolfson[70], indexing
with quadruples of points can produce a more efficient, system than alignment, be-
cause essentially the verification process is performed at the same time as indexing.
The efficiency of the system comes because it does not need to separately verify each
possible hypothesis. as alignment does.

Our experiments do, however, also indicate that indexing can result in greatly
reduced recognition time when combined wiih some grouping. Grouping alleviates
the need to form all combinations of features. Instead, groups of features that are
likely to come from a single object, are found. Let P(n) be the number of image groups
produced by a grouping method. and Q(n) be the number of model groups. In order
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for grouping to be useful. P(n)Q(n). the number of all matches between groups. must
be much less than Nn jln, the number of possible combinations of features.

With grouping alone, and no indexing, recognition must consider P(n)Q(n)n!
matches if grouping provides us with no information about the ordering of the points
in a group. This quantity increases as n increases, partly because we expect that P(n)
and Q(n) will increase with n. So it is still more desirable to generate hypothetical
matches using small groups, as we see in Lowe's svstem[73]. However, when weP(n)Q(yi)n!

combine grouping with indexing, the number of matches is P(n) ! Since s(n)
increases exponentially in n, this quantity will decrease as n increases. as long as
n! << %(n). Thus, with indexing and grouping used together, larger groups may be
used to significantly speed up recognition.

Furthermore, these figures assume that even with grouping. we must consider
matching all permutations of an image group to a model group, because they assume
that a group is just an unstructured collection of points. As we will see, grouping can
also provide information on the order of points in a group that we can use to rule
out most permutations. As a simple example, if we group lines into parallelograms,
as Lowe did, and use the corners as point features, we know the order of the points
around the parallelogram. There are only four different ways to match the points of
two parallelograms, compared to twenty-four different ways of matching two general
collections of four points each. This still does not mean that larger groups will be
useful to a system that uses grouping without indexing, but it means that grouping
and indexing corr bined can achieve even better performance.

6.2 Convex Grouping

Much work on grouping has focused on Non-Accidental Properties, and we have dis-
cussed that work in chapter 5. We mention here that Lowe first stressed the impor-
tance of using grouping when recognizing objects. His system estimated the likelihood
that image lines approximating a parallelogram came from a model parallelogram us-
ing the proximity of the endpoints of the lines and the degree of parallelism in the
image group. There has also been a good deal of work on image segmentation that
focuses on dividing up an image into regions based on clues such as color and tex-
ture. Most segmentation work focuses on using regional intensity patterns to divide
on image into its component parts. Recently Clemens[30] has considered methods of
using regional intensity to form groups in the image for use in recognition. and Sveda-
Mahmood[99] has considered using color-based segmentation to guide a recognition
system.

Jacobs[60.59] proposes using the relative orientation of edges to guide a grouping
system that is combined with indexing. In this system, the proximity and relative ori-
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entation of two convex collections of line segments are used to estimate the likelihood
that these two groups came from a single object. If one assumes that objects are made
of convex parts, then one can show that the mutual convexity of collections of lines is
a strong clue that they came from a single object. and one can estimate the strength
of this clue from the overall shape of the lines. These grouping clues guide a search
for an object in which the groups are tried in the order provided by the likelihood
that they come from a single object. This system explicitly combined grouping and
indexiing, and it demonstrated that by building larger and larger groups, grouping
combined with indexing could produce significant reductions in search. This system
provides some of the justification for our current method of finding salient convex
groups.

Convexity has also played an important role in a number of recognition systems
that rely implicitly on some grouping process. Acronym[21] modeled objects using
generalized cylinders that were convex. These convex parts projected to convex col-
lections of edges in the image. A bottom-up grouping system then located ribbons
and ellipses, the convex groups generated by the types of generalized cylinders used.
Kalvin et al.[63] describes a two-dimensional recognition system that indexed into a
library of objects. It began by finding unoccluded convex curves in the image, which
it used for indexing. A variety of authors have proposed more general recognition sys-
tems that rely on finding the convex parts of objects. Hoffman and Richards[52], for
example, suggest dividing objects into parts at concave discontinuities. Pentland[88]
also suggests recognizing objects by recovering their underlying part structure using
superquadrics. And Biederman[9] suggests performing recognition using the invari-
ant qualities of an object's parts and their relations. While these parts need not be
convex, in all examples the edges of a part are either convex, or are formed by joining
two convex curves (as in the curved tail of a cat or the outline of part of a doughnut).
In fact. in implementing a version of Biederman's work, Bergevin and Levine[8] rely
on convexity to find the parts of an object.

Convexity may be useful for other types of matching problems. such as motion
analysis or stereo. Mohan and Nevatia[S8], for example, perform stereo matching
between groups of line segments that form partial rectangles in each image.

In sum, the use of convexity for bottom-up aggregation is quite pervasive in recog-
nition systems. It clearly can contribute to the perceptual saliency of a group of lines.
Past work has shown that convexity can be a valuable grouping clue to combine with
our indexing system. It also can provide information about the order of points within
a group. At the same time, a thorough treatment of convexity can provide a middle-
level vision module that would be useful to many other systems. For although many
systems rely on finding convex edges in images, they find these convex groups through
ad-hoc methods that either rely on the particular kind of convex shape being sought,
or that rely on having data with clear, connected or nearly connected edges and few
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distracting edges. In this chapter we present an algorithm that finds all collections of
convex line segments in an image such that the length of the line segments accounts
for some mininmm proportion of the length of their convex hull. This promotes ro-
bustness because all convex curves are found provided that a sufficient percentage of
the curve is visible in the image. The algorithm is not stumped wheni there are gaps
in a curve due to occlusion, due to a curve blending into its background. or due to
failures in edge detection. And spurious line segments will not distract the algorithm
from finding any convex groups that are present. We also show that this algorithm
is efficient. finding the most salient convex groups in approximately 4n ' log(2n) time
on real images.

While many vision systems that use convex groups have developed simple ad-hoc
methods for finding them, there has also been some work that specifically addresses
this grouping problem. Our own previous work on grouping, which focused on com-
bining pairs of convex connected, or nearly connected, collections of edges, used a
simple method to produce the convex groups that formed the initial input to our
primary grouping system. Lines were connected if they were mutually convex, and
if their end points were closer to each other than to any other lines. Because this
initial grouping step was based on a purely local decision, it was sensitive to noise,
and could combine lines that seemed good locally, but, poor when viewed frum a more
global perspective.

Huttenlocher and Wayner158] also present a local method for finding convex
groups. They begin with each side of each line segment as a convex group, and
then extend a group if its nearest neighbor will preserve its convexity. By only mak-
ing the best local extension to each group. they guarantee that the output will be
linear in the size of the input. And by using a Delauney triangulation of the line
segments, they guarantee that nearest, neighbors are found efficiently, and that total
run time is O(n log(n)). They also can efficiently form groups in which the best exten-
sion is judged differently, for example, extending groups by adding a nearby line that
minimizes the change in angle of the group. However, convex groups are still formed
using purely local judgements that do not, optimize any global grouping criteria.

In both systems, a line may be the best local addition to a neighboring line, but
may lead nowhere, causing each system to miss a better overall group. Figure 6.1
illustrates the sensitivity of these local methods of finding convexity. In the top left
picture, the side of the box that says "ICE" is a closed rectangle. The local and
global methods will all identify this rectangle as a convex group. On the left, we
see two pictures in which the local methods for finding convexity will fail to find
this rectangle. The top picture in the leftmost set shows that local methods may be
sensitive to small gaps between edges if there are nearby distracting edges, while the
bottom picture illustrates the fact that neither local method is resistant to occlusion.
On the right, and on the bottom, we see some of the groups that a local method
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Figure 6.1: In the top left, we show a simple line drawing. Local methods can
find the rectangle containing the word "ICE", as shown on the top right. In the two
pictures on the left, these methods will fail. The three pictures on the right and on
the bottom shows some of the groups that a local method might find in place of the
central rectangle.
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might find in place of the rectangle surrounding the word -(ICE". In the case of our
previous work on grouping, the failure that would occur in these images in the initial
local grouping phase would have led to failure in the subsequent global grouping step.
However. the convex grouping system presented in this chapter will succeed on all the
images shown, because the gaps and occlusions in the figures will only slightly reduce
the salience fraction of the foremost rectangle; it will still stand out as quite salient.

Shashua and Ullman[96] present a different kind of grouping system that is in some
sense local and global. Their system finds curves that globally minimize a weighted
sum of the total curvature of the curve and the total length of gaps in the curve. Their
system optimizes a global criteria efficiently and finds perceptually salient curves. But
it is only able to do this because their global criteria is reducible to a local one. The
effect that adding a curve segment has on a group only depends on the previous curve
segment. and is independent of the overall structure of the curve.

Along these lines, a number of other systems attempt to extract meaningful curve
segments from an image. Mahoney[74] describes an algorithm for extracting smooth
curves. The focus of this work is on developing an efficient parallel algorithm, and
on deciding between competing possibilities when two curves overlap. Cox, Rehg,
and Hingorani[36] describe a system that will partition the edges of ail image into
collections of curves. These curves will tend to be smooth, and max, contain gaps. A
Bayesian approach is used to find the curves that are likeliest to be the noisy images
of smooth, connected curves in the scene. Zucker[1161 and Dolan and Riseman[41])
also group together smooth image curves with small gaps. Other systems have found
curves in the image that may be grouped together based on collinearity. (Boldt. Weiss
and Riseman[24]), or cocircularity (Saund[93]).

These grouping systems all apply local criteria for grouping because it seems
necessary for efiiciencv. In this chapter we show that a global criteria can be enforced
in an efficient system.

6.3 Precise Statement of the Problem

Here we describe precisely the convex sequences of line segments the algorithm will
produce. d introduce some useful notation.

The system begins with line segments that we obtain by running a Canny edge
detector[25] (in the experiments shown, o = 2), and then using a split-and-merge al-
gorithm based on Horowitz and Pavlidis[S7] to approximate these edges with straight
lines. This system approximates curves with lines whose end points are on the curves.
such that the curves are no more than three pixels from the line segments.

We call a line segment -'oriented" when one endpoint is distinguished as the first
endpoint. If 1i is an oriented line segment, then lij is its first endpoint. and 4i.2
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Figure 6.2: The thick lines represent the lines in a group. The thin lines show the
gaps between them. The salience fraction is the sum of the length of the thick lines
divided by the sum of the length of all the lines.

is its second. The image contains n line segments, and so it has 2n oriented line
segments. The convexity of a set of oriented line segments depends on their having
the appropriate orientation. That is, a set of oriented line segments is convex if for
each oriented line segment, all the other line segments are on the same side of the
oriented line segment as its normal, where we define the normal as pointing to the
right when we face in the direction from the line segment's first endpoint to its second
endpoint.

Let S,, be the cyclic sequence of oriented line segments: (l1 , 12, ...ln), that is, 11
follows 1n. We define Li to be the length of li, and Gi to be the distance between li,2

and li+l,1, where Gn is the gap between 1,.2 and 11,1. We then let L1,, = E', Li and
Gl,. = 17,L G i. We say that S,. is valid if and only if connecting the line segments
in sequence would create a convex polygon, and if LIn > k for some fixed k. We

Li,n+Gl,s

call the fraction fraction of the convex group (see figure 6.2).call th fracti n Gl,n+1.

Often, many of the subsets or supersets of a valid sequence will also be valid. To
avoid excessive search that merely produces many similar sequences, the algorithm
will not produce some sequences when valid subsets or supersets of those sequences
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are produced for which the salience fraction is higher. With this caveat, the algorithm
produces all valid sequences of oriented line segments.

The important thing about the output of this algorithm is that it is guaranteed to
satisfy a simple, global criteria. One way to think of the salience fraction is that if the
lines forming a group originally came from a closed convex curve, the salience fraction
tells us the maximum fraction of the curve's boundary which has shown up in the
image. Use of a global salience criteria means that if a group is salient, adding more
distracting lines to an image cannot prevent the algorithm from finding it, although a
new line could be added to a salient group to make it even more salient. Occlusion can
affect the salience of a group by covering up some of its edges, but will not otherwise
interfere with the detection of the group.

6.4 The Grouping Algorithm

In this section we present an algorithm for finding these salient convex groups. We
begin by presenting a basic back-tracking algorithm. WVe are able also to analyze this
algorithm theoretically in order to predict its expected run time and the expected
size of the output. We show that the actual results of running the algorithm match
our theoretical predictions. We then make some modifications to the basic algorithm,
which make it more robust, but which would make a complexity analysis more com-
plicated. So we use experiments to show that these modifications do not significantly
affect the algorithm's performance.

6.4.1 The Basic Algorithm

In order to find all sequences of line segments that meet our criteria, we perform a
backtracking search thr,'mh the space of all se-iiences. While such a search in the
worst case has an execution time that is exponential in the number of line segments,
this search is efficient in practice for two reasons. First of all, we are able to formulate
constraints that allow us to prune away much of the potential search space. Second,
much of the work needed to check these constraints can be computed once, at the
beginning of the algorithm in 0(n2 log(n)) time, and stored in tables. This makes
the work required to explore each node of the search tree small.

Constraints for a backtracking search

Our problem definition is in terms of global constraints on the groups of line segments
we seek. To perform an effective backtracking search, we must convert these into local
constraints as much as possible. That is, we need constraints that determine whether
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a sequence of line segments could possibly lead to a valid sequence, so that we may
prune our search.

First, we will list the constraints we use to decide whether to add an oriented
line segment to an existing sequence of oriented line segments. We call a sequence
acceptablh if it passes these constraints. Then we will show that searching the space of
acceptable sequences will lead to all valid sequences. These constraints may, however.
produce some duplicate sequences or some sequences that are subsets of others. These
may be eliminated in a post-processing phase. We provide the following recursive
definition of an acceptable sequence, assuming that Si is acceptable.

1. Any sequence of a singleton oriented line segment is acceptable.

2. Sj+j is acceptable only if 1j+i ý Si.

3. Sj+1 is acceptable only if the oriented line segments in it are mutually convex.
This will be the case if the sum of the angles turned is less than 27r when one
travels from the first endpoint of the first line to each additional endpoint in
turn, returning finally to the first endpoint.

4. Sj 1 is acceptable only if: Gi < I I -k, - Gi,j- 1 . This is equivalent to statingk

that T+,, > k.
L1,.+GI,,>k

It is obvious that (1) and (2) will not eliminate any valid convex sequences. (3)
guarantees that all the sequences we find are convex without eliminating any convex
sequences. (4) states that if we are seeking a sequence of line segments with a favorable
ratio of length to gaps between them, we need only consider subsequences that have
the same favorable ratio. This trivially ensures that the final sequence will not have
gaps that are too large, since the ratio of length to gaps is checked for the final
sequence.

We must show that constraint (4) does not eliminate any valid sequences. however.
To show this, we first notice that our backtracking search will try to build a valid
sequence starting with each of the line segments in the sequence. In some cases this
will cause our search to reproduce the same sequence of line segments, as we start at
each line segment. tracing out the remaining segments of the convex sequence. To
ensure that a valid sequence is always found, we must show that using at. least one of
the sequence's line segments as a starting point, constraint (4) will not apply to any
of the subsequences we produce on the way to finding the entire sequence.

We will talk about subsequences, Si,j consisting of (li...lj). If j < i, we will
mean the subsequence i ... 1,J1..lj. We say for Sjj that its "ratio is acceptable" iff

L,,j > k. We call (li...lj) continuable if for all r. such that 1, is between 1i and 1jL,,j+G,,
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in the sequence, Si,'s ratio is acceptable. Then constraint (4) will not eliminate any
valid sequence, Sn, if for some i, Si.,-i is continuable.

First we show that if two continuable sequences of line segments. Si,, and Sit,,,
overlap or if Sij, begins with the line segment that follows the last line segment of
Si,., then their union, S'j, is continuable. To show this we must show that Si., has an
acceptable ratio when 1, is between 1, and iji. Clearly this is true when 14 is between I,
and 1,. if 1, is between lj and lj,, then Si., = Si, U Sit,,. S, and Sitr have acceptable
ratios, and since Li, = Lij + Li,' and Gi.r = Gij + Gi,.r, Si, also has an acceptable
ratio.

We can form the set of maximal continuable subsequences. i.e. no sequence in the
set is a proper subsequence of another continuable subsequence. If this set has just one
subsequence that covers the entire sequence of line segments, we are done. Otherwise.
suppose Sij is a maximal continuable subsequence. Then 1j+1 must not belong to
any continuable subsequence or this sequence and S8i, would together form a larger
continuable subsequence. Si,j+l must not have an acceptable ratio or it would be a
continuable subsequence. So we may divide the sequence into disjoint subsequences
consisting of each maximal continuable subsequence and the line segment that follows
it. Each of these subsequences has an unacceptable ratio, so the sequence as a whole
must, a contradiction.

So we can find all valid collections of oriented line segments by searching through
all sets of acceptable line segments. The constraints that define an acceptable se-
quence prove sufficient to greatly limit our search.

Pre-processing for the search

To further reduce the run time of our algorithm we notice that some computations
are re-used many times in the course of such a search, so we precompute the results
of these computations and save them in tables. In particular, we often wish to know
whether two oriented line segments are mutually convex, and if they are we want to
know the distance from the end of one segment to the beginning of the other. It is
also convenient to keep, for each oriented line sef ment, a list of all other line segments
that are mutually convex with it, sorted by the distance that separates them. Finally.
we precompute the angle that is turned when going from one oriented line segment
to another. Calculating this information takes O(n2 log(n)), because we must sort 2n
lists that can each contain up to n items.

We may now describe the backtracking search in more detail, noting how these
results are used. The search begins by trying all oriented line segments in turn as
singleton sequences. Given an Si_ we calculate Ll,,(1-k) - Gi -1 . From constraint (4).
we know that we only want. to consider adding a line. li+i, when the distance from 'i2

to i+1a is less than or equal to this quantity. Clearly we only want to add li+J if it
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Figure 6.3: A salient convex group may be formed by choosing any line from each
of the four sides.

is mutually convex with Ii. So we can find all candidates to add to the sequence by
referencing our precomputed list of line segments that are convex with Ii. Since these
lines are sorted by their distance from 1i we may loop through them, stopping once
we reach line segments that are too far to consider. By limiting ourselves to these
candidates, we have enforced constraint (4). In addition, we check that li+J is convex
with 11 using our precomputed results.

We can then enforce constraint (3) by keeping a running count of the angles turned
as we traverse the line segments in Si. A table lookup will tell us the angles added
to go from 1i to 1i+1 and from 1i+1 to 11. Therefore, we can ensure that the entire
sequence is mutually convex by checking that the angles turned in traversing it sum
to 27r. And constraint (2) is simply checked explicitly.

6.4.2 Complexity Analysis of the Basic Algorithm

In the worst case, this search will be exponential in both run time and in the size
of its output. As a simple example of this, in figure 6.3 we show eight lines formed
into a squarish shape. Even for fairly high values of k, we may form a salient convex
group using either of the two lines on each side of the square. This gives us a total of
2' different square groups. If instead of a square we formed n-tuples of lines around
an mr sided convex polygon, we could easily construct an image with an output of
at least rnn groups. By making the sides' endpoints close together, we can ensure
that these groups are judged salient for any value of k less than 1. And the work
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required by the system is at least equal to the size of the output. so this would also
be exponential.

However, we have found our algorithm to be fast in practice. and we can under-
stand this by making an expected time analysis instead of a worst-case one. To do
this, we need some model of the kinds of images on which the system will run. We
model our image simply as randomly distributed line segments, and then compare
the results of this analysis to its performance on real images.

There are many different random worlds that we could use to describe the image
formation process. Our goal is to choose something simple and realistic. These
goals are often in conflict, however, so we will often sacrifice realism for simplicity.
We will also have to choose between several alternatives which may seem equally
plausible. In making these choices and trade-offs, we will try to ensure that we
provide a conservative estimate of our algorithm's performance.

We assume that an image consists of n line segments whose length is uniformly
distributed from 0 to Af, the maximum allowed length. This distribution is conser-
vative because real images seem to produce shorter line segments more often than
longer ones, while the presence of longer lines causes our algorithm to perform worse,
since longer lines contribute to more salient groups.

Our overall strategy for this analysis is to derive two saliency constraints which
may be considered separately. We use these to determine the likelihood that a ran-
domly located line segment can be legitimately added to an existing group. We will
assume that all line segments have angles of orientation drawn from a uniform dis-
tribution, and that the beginning point of a new oriented line segment is uniformly
distributed within a circle of fixed radius, R, centered at the second endpoint of the
last oriented line segment in the current sequence. A circle is the worst shape for our
algorithm, because randomly distributed lines are closest together when distributed
in a circle, again leading to more saliency. This likelihood will vary with the size
of the group. By determining these likelihoods, we compute the number of partial
groups that our search will have to explore at each level, which tells us how much
work the search must perform overall. In the course of this anal ysis. we will make
several more simplifications that will serve to make the analysis further overestimate
the algorithm's run time.

First, let us illustrate the two constraints assuming that a group contains just one
line, as shown in figures 6.4 and 6.5. We will call the length of this line 711. We
assume that the connection between the first line, 11, and the second line, 12 is made
between the second point in the first line, 112 and the first point in the second line.
121. Then from condition (4), given above, we know that the distance from 112 to 121

must be less than mlk', where we let k' = 1 This determines a circle around 112

where 121 must appear to preserve our saliency constraint.
Next, we have a constraint on the angle and location of 12. Let us use a, to
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Figure 6.4: 121 must appear within the dashed circle to satisfy the distance constraint
derived from the requirement that groups be salient.
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Figure 6.5: The dashed circular wedges show where 121 must lie in order to satisfy
the distance and convexity constraints.
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denote the angle of the vector iiom 1,1 to 1j2. where the angle of (-1.0) is taken as
0. angles increase as we rotate clockwise. and without loss of generality we assume
that 11 has an angle of 0. Then the angle of 12 restricts the location at which 121

can appear while maintaining convexity with /1. For example. if 12 has an angle of
"it must appear in the tipper left quarter of the circle determined by the distance
constraint. In general, as shown in figure 6.5. for a2 < 7r, the angle formed by 11 and
the connecting line from 112 to 121 Must be between 7r and 7r - a2. If a2 > T" a convex

connection may still be made, but only if this angle is less than 27r - a2. In either
event, 121 must be above 11 to maintain convexity when connecting the lines. This
deri ation is a bit conservative: it does not capture all the possible constraint in our
definition of convexity. In particular. it does not ensure that the connection from 122

to 11, preserves convexity.
If we consider groups with more than one line, these constraints change only

slightly. The distance constraint reverts to the more general formulation: G, -

L lj] P- G7 1i-1 . The angle constraint remains unchanged. because it reflects the con-
straint that the two lines be mutually convex. But we must add to it a constraint
that all the lines be convex together. We can require that as we go from one line to
the next in the group, we do not rotate by more than 27r. which we can express as:
F"2 a - (i-1 < 27r.

\Ve now outline our strategy for computing the probability that ail ordered group
of 11 line segments will form a string that satisfy our salient convexity constraints.
First we determine the probability that the distance constraint is met each step of
the way, and take the product of these probabilities. Then given that the distance
constraint is met at one step, and so Iii falls in an appropriate circlo about 1(-1)2.
we compute the probability that it will fall in the right part of the circle to produce
convexity. We also take the product of these probabilities over all steps. Finally. we
find a probablility distribution for the sum of the angles our lines have turned, and
use this to find the probability that the n lines will not have together turned by more
than 27r. One thing that makes these computations much simpler is that they are
essentially independent.. Once we assume that the distance constraint is met. this
does not effect the probability distribution of the slope of a line. or the angle to it
from the previous line. Therefore, the angle constraints may be treated in the same
manner every step of the way.

The Distance Constraint

As we have noted, the distance constraint requires lil to fall somewhere in a circle
of some radius. call it ri, so that the gap created is not too large. \We also assume
that the point is located somewhere in a circle of radius R according to a uniform
distribution, Therefore. the probability of the distance constraint being met at any
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one step is the ratio of the area of these two circles. To find this. we need to compute
the (list ribution of the radius of the first circle. As mentioned above. r2 =,mi. Let
h(ri) denote a probability density function on r,.

It is useful to think of r, in the following way. The ratio of the lengths of the lines
in a group to the gaps must always be held above some threshold. r, is the gap that
is currently allowed between 1(,-1)2 and 1,1. However, if the distance from 1(,-1)2 to Iii
is less than ri. than this gap isn't all used up. The excess gap may be carried over to
the next liric that we add on. In addition, the length of 1, (ni,) will make "iki more
gap available to us. Therefore, we can recursively compute h(r,) by alternating two
steps. When we add the first line to the group, this increases the allowed gap by k"m1 .
So we compute h(r 2 ) using the distribution of ml . Then when we attach another line
to the group, we use up some of this allowed gap. Let s, stand for the gap that is
left over, that is S•i = 7I -I/(i-1)2 1 11 . Let g(sj) stand for its probability distribution.

Then we can readily compute g(.s,) from h(rj. We then compute h(r,+i) from g(Si)
by taking account of the fact that the length. mi will allow some more gap.

To begin, we have assumed that the lengths of the line segments are uniformly
distributed between 0 and Ml. Therefore the distribution function of rin is -! and
the distribution: h(r 2) = k'ml - I

Given a distribution for h(ri) we will want to compute two quantities. First, we
will compute the probability that jl, falls inside a circle of radius ri. We indicate this
as:

fR r 2

Pr(jIl(i_1)21ilj <_ = i h(ri)- dri
JO 1 R2

Second, we want to use h(ri) to determine g(sj, given that lil does fall in a circle of
radius ri. For a fixed value of ri, and for some value T _< ri:

Pr(si < Ir i) = 1 - (ri 3- )2

2 -2

ri r2

Taking the derivative, we find:

g(silri) 2 --
r i r ?I

Note that this equation holds only when .si < ri. since the probability that si > ri is
always 0.

To compute g(si) we must consider all values of ri greater than si. and for each,
determine the likelihood of such an si occurring. That is:

g(s) rax(r) h(ri) (2 _. 2 di-,



6.4. THE (;RO('PING ALGORITHM 163

where inax(r,) is the largest possible value of r,. r, is bounded by (i - 1)k'M, which
is the maximum length of a group of (i - 1) lines. times k'. r, is also bounded by R.

Next, given g(.,i). we want to determine h(r,+i). For a given .si, ri+- = %, + k'P,.
The distribution of the sum of two values is found by convolving the distributions
of each value. In this case, since k'm, is at most k'M and no less than 0 we only
consider values of ._, betwee i ri+l - k'M and ri+,. so:

(r+i~) Imax(0,(r,+i-k'M)) (Mk'

In fact. this integral is a bit of a simplification, because ri may never be bigger than R.
If we ignore this effect, we are only exaggerating the likelihood of an additional line
meeting the distance constraint, and hence overestimating the work that the system
performs.

Given these relationships, we may compute any h(ri). This means that given that
we have a group of i lines, we may compute the probability that another line will fulfill
our distance constraints. While we could in principal find these values analytically,
the integrals quickly become complicated, and so it is more convenient to compute
these values numerically.

The Angle Constraint

There are two parts to our treatment of the angle constraint. First, we consider the
probability that a line that passes the distance constraint will be locally convex with
just the previous line. When a line, li, passes the distance constraint, we know that
lil will be uniformly distributed in a circle about /(i-1)2. As we mentioned above, the
location of la in this circle is constrained to lie in a wedge, and so the probability
of this occurring depends only on the angle of the wedge, and is independent of the
radius of the circle. The wedge's angle is ai - ai-1, the angle of 1i relative to li-1,
provided that ai - ai-l < 7r. Otherwise, the wedge's angle is 2ir - (ai - ai- 1). For
a given angle of li, the likelihood of 1i being compatible with li-I is just the angle of
this wedge divided by 2r. So integrating over all angles, which we've assumed are
uniformly distributed, we find that there is a probability of 1 that the lines will be4
compatible.

We must also consider the probability that a sequence of i lines will be mutually
convex. We derive a distribution on the sum of the angles that must be turned as we
go from one line to the next, and use this to determine the probability that this sum
;s less than 27r. This is a necessary, though not a sufficient condition on convexity.
The distribution on each such angle is independent of the others and of the distance
between the lines. So we need only consider the distribution on one of these changes
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of angle, and then convolve this distribution with itself i times to find the distribution
on the sum of i such angles.

We know that the angle of one line relative to the previous one is uniformly
distributed between 0 and 27r. We also know the relationship between the angle of
the line and the probability that it is compatible with the previous line. So this
probtbility of compatibility gives us a distribution on the relative angle of a new line,
once we normalize it. If we let f be a probability density function on the change in
angle of a new line, we have:

a, -a,_ if ai -- ai-i : r¢
f(ai - aiaa,) if a - > -r

Ir2 a i1> 7

Convolving this distribution with itself is perhaps facilitated by noticing that
this distribution is the convolution of a uniform distribution from L to 2. This

2 2
convolution is straightforward to perform analytically, but for our convenience we
take it numerically.

Expected Work of the Algorithm

We are now in a position to determine the expected work our algorithm must do.
As we have stated, there is a fixed overhead of O(n 2 log(n)) work. In addition, we
sum over all i the amount of work that must be done when we consider extending all
groups of i lines by an additional line.

Since we are interested in the expected amount of work, we need to know the
expected number of groups of length i that we will build. This is just the number
of possible groups of that length times the probability that any one of them will
pass our salient convexity constraints. If our image contains n line segments, we
must consider two possible directional orderings for each line segment, so there are
2n(2n - 2)...(2n - 2i + 2) possible ordered sequences of i line segments. Let 6i be the
probability that the i'th line will pass the distance constraint, given that the previous
lines have, and let )i be the probability that a group of otherwise compatible lines
will have angles that sum to less than 27r. Then the expected number of groups of
size i that we must consider, which we will call Ei, is:

Ei = A•2n(2n - 2)...(2n - 2i + 2)b2...6 ()i-

where El = 2n.
For each group we reach with i lines, there are potentially 2n - 2i lines that we

must consider adding to the group. However, our preprocessing has sorted these lines.,
so that we only need to explicitly consider the ones that meet the distance constraints
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and that are convex with the last line in our group. We call the expected number of
possible extensions to a group of size i, Xj. and:

Xi = I(2n - 2i)bi+l
4

The total amount of work that we must perform in the course of our search is
proportional to the number of times that we must consider extending a group. This
work is given by:

Z EiXi

This expression allows us to see that asymptotically, even the expected amount
of work is exponential in n, because our run time is of the form:

2 3cln + +2n + C371

where the ci values are constants that are independent of n. This type of asymptotic
behavior is uninteresting, though. It only tells us that as the image becomes arbitrar-
ilv cluttered, the number of salient groups becomes unmanageable. But of course we
know that at some point, as an image becomes arbitrarily cluttered, recognition will
be impossible. The key question is: when will this happen? An alternative approach
is to perform an analysis of the algorithm's asymptotic behavior by assuming that as
n grows the size of the image grows so as to maintain a constant density of lines in
the image. Instead, we simply compute the expected run time for a variety of realistic
situations.

To compute these values, we simplify the distance constraint by assuming that
ri is never larger than R. This is reasonable, because the maximum total length of
lines in a group can never exceed 27rR, and so ri can never exceed k'27rR. So this
limitation will have no effcct when k' < 2, and will otherwise only effect rare groups
that have very long lines with little gap between them. With this simplification
made, R appears only when we use h(ri) to compute the likelihood that a random
line segment end will fall inside a circle of radius ri; we can ignore R in computing the
values of h(ri) aud g(si). We can further simplify by choosing all distances in units
of k'M. By assigning k'M the value 1, we may compute all h(ri) and g(si) once only,
without any variables. We only need to make up for this when solving the equation:

Pr( jlj,(_.) 2Ii1jl < ri) = Rh(r) r-2dri

At this point, we replace R with its value written in units of k'Ai, that is, with R
In table 6.1 we list the numerically computed values for the first 12 As and 6s3 . The

6 values are computed with k'M = .25 and R = 1. In practice, to find the 6 values for a
3AIl data in this section shows the first three significant digits only.
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Constant Probabilities
of Adding a Line

A, 1.00 61 .021
A2  0.500 62 .035
"A3  0.0805 63 .041
A4  0.00614 64 .044
A.5  0.000278 65 .044
A6  0.00000848 66 .045

A- 0.000000186 67 .045
A8  3.10 xl0-9  68 .045
A9  4.04 xl0 1- 69 .046
Alo 4.28 x10- 3  610 .046
Al l 3.65 Xl0615 611 .046
A12 2.64 x10-1T 612 .046

Table 6.1: The constant probabilities used to determine the likelihood that a random
line can be added to a salient convex group.

different value of R, say R', we simply multiply the above values by (A )2. In principal,
things are not this simple, because while this reflects the change in the value inside the
above integral, it does not take account of the change in the limits of the integral. In
practice, however, this effect is tiny because the function we are integrating becomes
very small before reaching the limits of integration. We have therefore shown that
after numerically computing one set of constants, we can then analytically compute
all relevant probabilities, making only unimportant approximations.

An important question is whether we can compute the expected work of the system
without having to consider every value in the summation, that is, whether EiXi
becomes negligible as i grows larger. As an example, with n = 500 and R = 1, the
first twelve terms of the summation are:

5,180 + 45,200 + 231,000 + 401,000 + 337.000 + 170,000

+57,600 + 14,200 + 2,640 + 386 + 45.6 + 4.44

In this case we can see that the trailing values become small, relative to the total.
Intuitively, we can also see why the trailing values of the summation will continue
to shrink. When taking the i'th value of the summation, we multiply the previous
value by something less than 2n times 1, 6i, and A While 6i rises as i increases, it
quicl-ly approaches an equilibrium point at which the average gap used up in adding
a line to a group equals the average gap allowed by adding a typical line. Ai is just
being repeatedly convolved (twice at each iteration) with a constant function, causing
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Expected Work. for M = R
Number k
of lines .6 .65 .7 .75 .8 .85 .9

200 1.99 Xl10 2,270,000 346,000 65.800 15,100 4,280 1650
300 75.72 Tl0 4.14 xl0' 4.200,000 561.000 93.200 19,000 5,200
400 8.73 xl'0 4T23 10 h 3.04 x10' 3,020,000 386,000 61.000 12,700
500 8.53 xl0° 3.05 A0 1.62 xlO 1.24 x10' 1.260,000 162,000 26,800
700 3.45 x710' 8.09 Al01' 2.65 x10' 1.29 x10' 8.830,000 791,000 90,700
1000 .2il4 376 1- 754 10'°2.11 r.109 8.77 x10' 5,060,000 378,000

Table 6.2: This table shows the expected work required to find convex groups. As the
number of lines in the image and the salience fraction, k, varies, we show the number
of nodes in the search tree that we expect to explore. The table does not show the
number of steps spent in a preprocessing step. By Al = R we indicate that the length
of lines are distributed according to a uniform distribution, with a maximum length
equal to the radius of the image.

Ratio of search to preprocessing, for M = R
Number k
of lines .6 .65 .7 { .75 .8 .85 .9

200 14.4 1.65 .25 [ .048 .011 .003 .001
300 175 12.5 1.26 .169 .028 .006 .002
400 1,410 68.6 4.92 .489 .063 .010 .002
500 8.560 306 16.3 1.25 .127 .016 .003
700 168,000 3,950 130 6.28 .431 .039 .004
1000 5,140,000 85,800 1.720 48.2 2.00 .115 .009

Table 6.3: This table is an adjunct to Table 6.2. It shows the expected number of
nodes explored in the search tree divided by the number of steps in a preprocessing
phase, for various image sizes and salience fractions.

it's tail to shrink at a faster than exponential rate. So overall, once n,1A, is less than
one, the terms in the summation continue to shrink.

We now use these values to compute some sample run times for the system. We
compute two sets of examples. First we suppose that Al = R, that is, that the longest
line is the length of the radius of the image. This seems a reasonable upper bound on
the length of the lines. Table 6.2 shows the expected work of the system as n and k
vary. Table 6.3 shows the amount of work of the system divided by (2n)2 log(2n). This
tells us roughly the proportion of the system's work is spent in search, as opposed to
fixed overhead, although one step of overhead is not directly comparable to one step
of search. When this ratio is low, the run time is well-approximated by (2n)2 log(2n).
In tables 6.4 and 6.5 we show the same values for MA =I

2'
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Expected Work, for M =

Number k
of lines .6 .65 .7 .75 .8 .85 .9

200 65,800 21,200 8.090 3.650 1,970 1.280 983
300 561,000 141.000 42,900 15,400 6,700 3,600 2,420
400 3,020,000 623,000 158,000 47,800 17,400 7.930 4.700
500 1.24 xO' 2.150.000 468.000 123.000 38,700 15.300 8.030
700 1.29 x1O8  1.64 Xl0 7  2,750,000 571,000 143,000 44.300 18.700
1000 x.1 9 lO T 1.83 1lO8  2.21 x10' 3,440.000 658,000 155.000 49,400

Table 6.4: This table is similar to Table 6.4. except that the lines are assumed to
have lengths drawn from a uniform distribution between zero and half the radius of
the image. It shows the expected number of nodes explored in the search tree to find
all salient groups.

Ratio of search to preprocessing, for M -
Number k
of lines .6 .65 .7 .75 .8 .85 .9

200 .0476 .0153 .00585 .00264 .00143 .000927 .000711
300 .169 .0426 .0129 .00465 .00202 .00108 .000728
400 .489 .101 .0256 .00775 .00282 .00129 .000762
500 1.25 .216 .0469 .0123 .00388 .00153 .000805
700 6.28 .803 .134 .0279 .00697 .00216 .000915
1000 48.2 4.18 .504 .0785 .0150 .00353 .00113

Table 6.5: The companion to Table 6.4, this shows the expected number of nodes
explored in the search tree divided by the number of preprocessing steps. This allows
us to see roughly when each component of the algorithm will dominate the overall
run time.
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Actual work for random lines, M = R
Number k
of lines .6 .65 .7 .75 .8 .85 .9

200 347,000 112,000 31,300 8.590 2.270 601 123
300 3:120,000 892,000 208,000 45,600 8,760 1.670 306
400 17,400.000 4,970,000 1,130,000 172,000 27,000 4.050 692

Table 6.6: This table shows the actual number of nodes in the search tree that were
explored when finding convex groups in randomly generated inm'ges. The lengths of
the lines were generated from a uniform distribution from zero to half the width of
the image. The points were then randomly located in a square image.

Later, we will compare this to the results of the full system on real data. For now.
we compare this theoretically derived estimate of the system's work to simulated data,
to determine the affects of various approximations that we have made. Our primary
approximation has been to assume that the end point of one line will be uniformly
distributed in a circle about the end point of a previous line, when even in simulation,
lines will be uniformly distributed in a fixed image. Also, we do not apply the full
convexity constraints in our analysis, because we do not ensure that a newly added
line is convex with the first line in our group. It is possible that connecting these two
lines would cause a concavity. We expect that these approximations should make our
analysis conservative, overestimating the work required.

In this test we first generate collections of random line segments in a square. To do
this, we choose the length of the line segment from a uniform distribution between 0
and half the width of the square, and we choose the angle from a uniform distribution.
Then we generate possible locations of the line by picking its first end point from a
uniform random distribution over the square. If the entire line segment fits in the

square, we keep it, otherwise, we use the same length and angle. but generate a new
location for the line until we find one that is inside the square. Table 6.6 shows the
results of these experiments for a few different values of k, and of the number of lines.
Comparing this table with table 6.2, we see that our analysis does conservatively
estimate the work needed for grouping. It overestimates this work by between a
factor of six and a factor of twenty, roughly.

We will discuss some additions to the algorithm that make it more suitable for
real images, and then describe experiments run on real images before we discuss the
significance of the system's run time. But first, we consider the size of its outpit.
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Expected Size of the Output

The size of the output of our algorithm is also important to consider. but its im-
portance depends on how we intend to use our grouping system. For example, if we
want to try indexing using all pairs of groups that are produced by grouping, it is
important that the number of groups be small, or forming all pairs of them could take
too much time. On the other hand, if we intend to select the 20 or 30 most salient
groups produced by the system, then the number of groups produced is riot important
to the efficiency of the system. Given a set of salient groups, we can readily find the
most salient ones.

Since we in fact intend to use only the most salient groups for indexing, we want
to estimate the size of the output for two reasons other than efficiency. First, if a
random image will produce many highly salient groups, this is a sign that convex
grouping will not be effective. It means that the "real" groups that reflect the actual
structure of the scene are likely to be drowned out by random groups. Second, if we
can predict the size of the output ahead of time, we can use this to decide how high
to set our salience threshold based on the number of lines in the image. We want to
avoid wasting time by picking a low salience value that will produce many random
groups which we will only discard when we select the most salient groups. Therefore
we can set our threshold to produce an appropriate output, reducing the work that
we perform finding less useful groups.

The expressions above for Ei tell us the expected number of groups of any par-
ticular length that we will encounter in our search. We could use this as a bound on
the size of the output, but this is an oversimplification. As we have noted, the values
for Ei are exaggerations because they are not based on all the constraint provided by
the convexity requirement. But in addition, just because a group is reached in our
search does not mean we will accept it. When we reach a group of length i in our
search, we have yet to take account of the length of the i'th line, or the gap between
the i'th line and the first one. It is difficult to determine the probability distribution
of this final gap, because it is dependent on the combination of i previous processes
that built up our group. But we can approximate it very simply by just assuming
that the last end point in the group is randomly distributed with respect to the first
end point. Using that approximation, the expected number of groups of size i that
the system will produce is:

" 1i+5 Ei
4

To find the total number of groups expected, we just sum all these values for i from
2 up. We ignore groups of size one because such groups are never salient unless the
salience fraction is less than or equal to .5.

Tables 6.7 and 6.8 show the number of groups that we expect to find using this
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Expected number of groups produced, for M = R
Number k
of lines .6 .65 .7 .7) .8 .85 .9

200 51,400 5,850 885 166 36.3 8.75 2.09
300 996.000 70,600 7,120 946 154 28.8 5.62
400 1.12 X 107 539,000 38,600 3,820 484 72.8 11.8
500 8.69 Xl07 3,100,000 165,000 12,500 1,270 158 21.7
700 2.50 x10 9  5.86 xOr 1,920,000 92,800 6,340 561 57.8
1000 1.14 xIO11  1.90 xIO9  3.80 X107 1,060.000 44,100 2,530 179

Table 6.7: This table shows the expected number of salient convex groups that we
expect our algorithm to produce, as the size of the image and the salience fraction
vary.

Expected number of groups produced, for M =-

Number k
of lines .6 .65 .7 .75 .8 .85 .9

200 166 51.9 18.4 7.16 2.90 1.15 .395
300 946 236 69.2 22.9 8.12 2.91 .934
400 3,820 783 195 56.1 17.7 5.81 1.74
500 12.500 2,170 466 111.8 :33.7 10.1 2.86
700 92,800 11,800 1,970 403 95.2 24.4 6.15
1000 1,060,000 92,300 11.100 1,720 320 67.2 14.4

Table 6.8: This table shows the expected number of salient convex groups that we
expect our algorithm to produce, as the size of the image and the salience fraction
vary.

Actual number groups for random lines, M = R
Number k
of lines .6 .65 .7 .75 .8 .85 .9

200 7,500 2,590 782 234 70 15 5
300 45,800 13,800 3,540 867 159 32 5
400 189,000 '55,500 13,300 2,300 392 58 6

Table 6.9: The actual number of salient groups that were found in images of randomly
generated line segments.
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method. Table 6.9 shows the number of groups that we found in experiments with
random line segments. There is a close fit between the predictions and the result of
simulations, both for the system's run time and the size of the output. In particular.
all these results show that the system will begin to break down at about the same
time. The key point is that our analysis and experiments all agree on the values
of k for which the system will run in a reasonable amount of time and produce a
reasonable sized output. We will now discuss how we apply this algorithm to real
data, and defer discussion of the implications of our analysis until we have presented
experiments on real images.

6.4.3 Additions to the Basic Algorithm

tI'p until now we have presented our algorithm in its simplest form, to facilitate
an analysis of its performance. We now discuss some modifications that make the
system more robust by finding groups that are nearly convex, and that reduce the
size of the system's output by eliminating groups that are similar or identical. Since
these modifications make analysis difficult, we present experiments to show the effect
that they have on the algorithm's performance.

Error in sensing or feature detection can cause lines that are convex in the world to
appear nearly convex in an image. Two lines may be almost collinear, so as to create
a slight concavity when joined in a group. To account for this, we decide that two
lines are mutually convex when they are slightly concave, but nearly collinear. Or,
one line, when extended might intersect the end of a second line, forcing a concavity
when the lines are joined (see figure 6.6). To handle this possibility, we allow a portion
of a line to participate in a convex group. This also allows us to find convex regions
of edges even when some of these edges are approximated by a long segment that
doesn't fit the region. We also may use just a portion of a line in a group even if
using the whole line would still produce a convex group. if using just a portion of the
line will make the group more salient by reducing the gaps between lines.

Our system will often find a number of similar convex groups. It will produce
duplicates of a group if that group can be found starting with different lines. Subsets
of a group will often pass our saliency constraint. For example, if four lines form
a square, and the saliency fraction, k, is .75, then a group of all four lines will
be duplicated four times, and four additional groups will appear containing every
combination of three of the lines. These duplications are most easily handled in a
post-processing stage. As long as our algorithm produces a reasonably small output,
we can quickly sort through the groups it produces. When duplicates occur, we keep
only one copy. If one group is a proper subset of another that was produced. we
throw away the subset.

The system can also produce groups that are spurious supersets of other groups.
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Figure 6.6: Four groups that our basic algorithm would not find. On the left. two
of the lines in the group are nearly collinear, but not quite. In the middle, the upper
line extends a little too far to the left to maintain convexity. On the right, the bottom
line is not convex with the middle ones, but the central part of the bottom line can
help form a strong convex group. In the bottom example, we can form a much more
salient group by including only part of the top line.
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Figure 6.7: Edges from two of the real edges used to test the grouping system.

Often, a strong group will have added to it some combinations of additional small
lines that reduce its saliency without changing the basic structure of the group. To
avoid this, if our search has produced a string with lines: ABC', we do not consider
the string ABXC if the latter string has a lower salience than the former. Since only
the salience of a string and its first and last line effect what other lines we may add
to it, we are guaranteed that any group that is formed from the sequence ABXC will
also be formed from the sequence ABC.

The additions described above allow our algorithm to handle sensing error and to
omit some groups that- will be redundant in the recognition process. Since we will
use these groups to derive stable point features, two groups with nea:ly identical sets
of lines are likely to give rise to the same set of stable fcatures, and we will not want
to use both of them in recognizing an object.

After making these additions to our algorithm, we reran our experiments to deter-
mine the effect they have on the runtime of the system and on the size of its output.
We ran both the basic algorithm and the augmented algorithm on a set of real images,
so that in comparing these results to our previous results we can tell how much of
the change is due to the use of real images, and how much is due to the additional
constraints.

Figure 6.7 shows examples of two of the images we used. Table 6.10 shows the
number of nodes explored in the search, for both the basic and full systems on these
and similar images. Table 6.11 shows the number of groups produced both both
variations of the algorithm on these images. Finally, figure 6.8 graphically compares
the previous results of our analysis and tests on random images to these new results.

Comparing these results to previous tables shows a good fit between our theoretical
predictions and the actual performance of the algorithm. We expect first of all that
our analysis will overestimate the amount of work required by the system. Second.
since we are overestimating the constants in an exponential series, we expect to have
more and more of an overestimate as the later expressions in the series become more
important. That is, we are overestimating the number of pairs of lines that our search
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Actual work for real images
No. Alg. k
lines Type .6 .65 .7 .7 .8 .85 .9
183 basic 1,800.000 548.000 133.000 29.900 7,030 2.000 613

complete 284,000 166.000 75.000 37.000 15.400 6.710 2.470
265 basic 5.630.000 1.660.000 420.000 102.000 27.200 6.370 1,410

complete 496.000 288.000 136.000 55.300 18.200 7.440 2.800
271 basic 816.000 193.000 47.000 9.740 1.590

complete 106.000 59.400 24,200 9.810 3.840
296 basic 7,200.000 1.820.000 429.000 93.300 16.300 3.350 946

complete 273.000 163.000 89,400 41.800 14.800 6.170 2.900
375 basic 689.000 226,000 78.600 27,100 9.620 3.410 1 390

1 complete 201,000 104,000 54,600 31,300 18.500 9,610 3,610
450 basic 2,090,000 696,000 227.000 69,000 21.300 6.420 2,160

complete 295,000 163.000 92.500 48.400 24.800 11,400 4.440
461 basic -72,000 26.700 9.970 3.560 1.250

complete 105.000 37.500 19.300 8,200 3.130

Table 6.10: This is the number of nodes explored in the search tree for some real
images. The second column indicates whether we used the modifications to the al-
gorithm described in the text to make it more robust, or whether we used just the
basic algorithm.
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Figure 6.8: This graph compares the expected and actual number of nodes explored
in the search for salient convex groups. The number of nodes are graphed on a log
scale as k varies, for four cases: our theoretical predictions of expected work when
.11 = R; the number of nodes actually searched with randomly generated images; the
number of nodes searched on real images with the basic system: and the number of
nodes searched on real images by the complete system. Only a sample of the results
are graphed here, for clarity. Different cases are graphed with different brushes. On
the right. N indicates the number of lines in the image. These are 200 and 400 for
the analysis and random images, and 183 and 296 for the real images.
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Actual number of groups found for real images
No. Alg. k

lines Type .6 .65 .7 .75 .8 .85 .9
183 basic 16,300 4.760 1,170 248 110 60 35

complete 2.160 1,190 494 315 134 69 31
265 basic 32.300 8,930 1,850 404 182 98 51

complete 1.750 982 542 276 120 47 27

271 basic _5.600 398 148 64 36
complete 540 291 157 65 34

296 basic 47.400 12,800 2.670 474 1:36 73 42
complete 2,040 1.180 620 312 152 85 42

375 basic 2:3,100 11,100 5,250 2.390 1,020 406 163
complete 1,680 1.020 536 331 188 122 48

450 basic 74.100 37.900 18.500 7,840 2,960 965 29:3
complete 2.160 1,340 797 430 235 125 52

461 basic 754 376 194 96 49
complete 863 368 178 8-1 34

Table 6.11: This table shows the number of salient convex groups produced by the
two variations of our algorithm, when applied to a number of real images.

will encounter by underestimating the effects of our constraints. When we consider
the number of triples of lines encountered, this overestimate gets compounded. We
expect the overestimate to become more extreme in situations in which the higher
order terms of our series come into play. This occurs as Lk shrinks and as N grows.
when the number of larger groups considered becomes substantial.

This is in fact what happens. Although there is considerable variation in the size
of the search from image to image. our theoretical analysis generally overestimates
the amount of work to be done, even when we assume 1= R that is. a distribution

2'
of line segments in which the longest segment is half the radius of the image. And as
k, shrinks, the gap between our theoretical estimate and actual performance grows.
All in all. we see that in real images we may use salience fractions of about .7 without
causing the search to dominate our computation. We find that the real images produce
somewhat more groups than our analysis predicts, assuming M = 2 The numbers
are of the same order of magnitude except when our analysis predicts a very small

number of groups: it seems that in these images there is usually a minimum number
of groups that will be found for each salience fraction, reflecting the basic structure
that is present to a comparable extent in all the images. Looking at the size of the
output to be produced. we find that a salience fraction of about .7 will also produce
an output of roughly the same size as the input, making the output reasonable to
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work with.
There are two significant ways in which real images differ from the random images

that we have analyzed. First, the real images contain many more short than long line
segments, our assumption about the distribution of the lengths of lines was quite
conservative. Second, real images contain much more structure than random images.
While the structure of real images might cause considerable extra search, this does
not seem to happen. One reason for this is that most of the system's scarch is spent
finding that one cannot form salient groups from lines in well separated parts of the
image. It is not surprising if, even in real images, collections of lines from separate
sections of the image are well modeled as having random relative orientations and
locations.

"We also measured the actual run time of our implementations of the grouping sys-
tern. However, because these programs have not been carefully optimized, numbers
concerning actual run times should be regarded with some skepticism. The system ran
on a Symbolics 3640 Lisp Machine. On an image with 246 lines, the basic algorithm
spent 48 seconds on preprocessing overhead. The search tree was explored at a rate
of between 450 and 2,300 nodes per second. Our implementation of the complete al-
gorithm was approximately a factor of 20 slower. Preprocessing was particularly slow
in the complete algorithm. However, our implementation of the complete algorithm
was simple and inefficient, and we believe that most of the additional time it required
could be eliminated in a more careful implementation. These numbers indicate that
the overall system could be expected to run in a few minutes or less in a practical
implementation, and that tL e difference in cost between a step of preprocessing and
a step of search is about one order of magnitude.

6.4.4 Conclusions on Convex Grouping

We begin with a very simple, global definition of what constitutes a salient group.
Although finding such groups is intractable in the worst case, we have shown that it
is practical in real situations. Our constraints on salient convexity allow us to prune
our search tree extensively, efficiently finding the most salient groups.

Although our experiments and analysis are long, they all support the same simple
conclusion. In images with several hundred to a thousand lines, our algorithm is
efficient if we set the salience fraction between .7 and .85. In these cases, run time
will be roughly proportional to 4n 2 log(n), and the size of the output will be roughly
P. In fact, we see that the size of the output becomes unreasonable at about the
same point at which the run time does. One way to condense all these numbers into
a simple form is to ask how much computation is required to find the rn most salient
groups in any particular image. For although we cannot anticipate exactly how many
groups will satisfy a particular salience fraction in a particular image, our analysis
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Figure 6.9: This graph shows the amount of work required to find the in most
salient groups in an image. when we use our analysis to choose an appropriate salience
fraction given the number of lines in the image, and m. The thick line shows the cost
of our preprocessing phase, which is the same for any value of 7n. The other lines
show the number of nodes we expect to explore in the search tree to find the desired
number of salient groups. Note that the graph is at a log scale.
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does predict this to good accuracy. So we may first use our analysis to estimate the
salience fraction required to produce a particular number of groups. given the size of
the image, and then use it to determine the cost of finding the groups in the image
with that salience fraction. This allows us to capture the main points of the cost
of our system in one graph. Figure 6.9 shows the variation in the number of steps
of computation required to find a fixed size output, as n varies. The graph shows
how many preprocessing steps are required, as n varies. Then, for different values
of Mn, we use the above analysis to determine the value of k which will produce in
salient groups. k varies with n. Then, we use these values of k and n to determine
the expected number of nodes we will explore in our search. This graph shows quite
clearly that for any reasonable sized output, the computation of the algorithm will
be dominated by our initial preprocessing step.

This tells us that in practice, the limitation of salient convex grouping is that
for extremely cluttered images. a very high salience measure must be used or we
will not find a small number of salient groups. We have therefore demonstrated a
simple salience clue that may be efficiently used in many real situations, while at the
same time we can see the need for using stronger and different kinds of evidence of
perceptual salience to handle especially large or cluttered images.

Although the algorithm stands or falls with its performance on real images of
interest, we believe there is much value to a theoretical analysis of the algorithm's
behavior. Our analysis has predictive value, it allows us to see when the system will
break down. We can tell that as images become more cluttered, our system will
continue to work if we demand greater salience in the groups that it produces. This
allows us to set the salience threshold dynamically, if we wish, to ensure that our
system will run quickly and produce a reasonably small output.

Hopefully this theoretical analysis also provides insight into the problem which can
be used to improve on our algorithm. We know that salient convexity is not the end-all
of perceptual grouping. It is too weak a condition, because it will not provide a small
number of salient groups in a complex image. It is too strong a condition, because
perceptually salient groups are not always convex. But understanding our algorithm
well should be helpful in showing us how to extend it. For example. our salience
measure does not pay attention to the angle between connected lines. If adjacent
lines in a group are nearly collinear, the group will appear more salient than if they
are at right angles, all other things being equal. And our analysis shows us exactly
how much less likely collinear lines are to occur by accident than are perpendicular
lines. So, while our current algorithm will add any line to a group that is within a
circle of the end point of the group, we can imagine using an elliptical region that
accounts for the fact that the less the angle between two lines, the farther apart they
can be while still being equally unlikely to appear convex by chance.

In sum. by carefully analyzing and testing our system. we can determine exactly



6.5. STABLE POINT FEATURES 181

when it will be useful. W~e find that it will be of value in many realistic situations.
WVe also can understand where the efficiency of the system originates. This should be
especially valuable as we attempt to modify or add to it.

6.5 Stable Point Features

Our indexing system requires point features. not line segments. At compile time we
must find groups of 3-D points to represent in our lookup table. At run time we must
find the projections of these groups in the image. Our indexing system finds matches
between image points and groups of model points that could have produced exactly
those image points, no more and no fewer. A model group will not match an image

group if some of the model groups' points are occluded, or if they are not found by
the feature detector. It also will not produce a match if an image group contains
extraneous points. We can make some allowances for occlusion by representing some
subsets of model groups in our table. But we need to find 3-D points that consistently

project to 2-D points that we can detect. The greatest difficulty in doing this is
stability. If small amounts of sensing error or small changes in viewpoint can make a
point, feature appear or vanish, then the set of points that characterize a convex group
will be always changing, and we would need to represent every possible combination
of these points in our indexing table in order to recognize an object. If error causes
the locations of points to shift drastically. then we cannot enforce reasonable bounds
on the error that occurs in locating a point.

Our strategy is based on locating points at the intersections formed by the lines
that a group's line segments lie on, as shown in figure 6.10. So we first focus on
evaluating the stability of these potential point features, and then show how this
stability measure is used to derive points from a group. We ask: Can small amounts
of errors in the line segments have a large effect on the location of these intersection
points? and: Can small changes in the location of edges obliterate a point altogether
by merging the two line segments that form the point into a single line segment?

We handle these questions in two ways, depending on whether or not the two line
segments are connected. If the intersection point is formed by an actual connection
between the line segments, then we know that, the segments are adjacent lines in the
approximation of a string of edge pixels. In this case we may base our analysis on
some properties of the straight-line approximation. Otherwise, we use a more general
model of the error in locating our line segments to determine the error in locating
their intersection point.

Suppose first that we have two unconnected line segments, which we call 11 and
12, with points numbered IlI, 112, l.,12, 122 as usual. Their nominal intersection point is
the intersection of two rays, with endpoints at 112 and 121, and with directions given
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Figure 6.10: We show the lines of a possible group of features. Circles indicate the
possible location of corner features. We have placed a question mark next to some
corners that are possibly unstable. We label the end points of two of the lines that
generate a corner point.
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by the vectors from 11, to 112 from 122 to 121- We assume that there is some error in
locating the endpoints of each line segment, and see how this translates into error in
the location of the intersection point of their corresponding rays.

We assume a fixed bounded error in the two points that are furthest apart. /11
and 122. We call the amount of this error (1, and we have set it to five pixels. While
these two points are usually widely separated, the points 112 and 121 may be quite close
together, and allowing fixed errors in their locations may exaggerate the relative error
that will occur. For example. if the points are only five pixels apart. it will often be an
exaggeration to assume that they might be fifteen pixels apart. This is based on tbe
empirical observation that relative uncertainty in locating features is often correlated
when the features are nearby. Therefore, for the error in these points, we use either
( or 10%/(, of the distance betwecn the two points, whichever is smaller.

If we think of the intersection point as arising from two rays. then we may sepa-
rately bound the maximum effect these errors can have on the angle of the rays and
on their location. Since the rays are located at 112 and 121, the error in these points
bounds the error in the ravs' locations. The error in their direction is maximized as
the points III and 122 are displaced normal to the line, while the other end points are
fixed. Thus, the maximum variation in angle is given by arctan( (I-) and arctan(±1L),
where we recall that mi is the length of 1i'.

With these bounds on the location and direction of the two rays, we find the
maximum distance between their possible intersection point and their nominal inter-
section point by considering all combinations of extreme values for their angles and
locations. If for any possible angles the rays do not intersect, this means that for some
error values they are parallel, and the instability in the location of their intersection
point is infinite. The maximum variation in the intersection point is then used as an
estimate of a point's instability.

Suppose now that the two line segments intersect at a point, that is, that 112 = 121.
Then the problem becomes one of determining how much an anchor point can vary in
the split-and-merge algorithm for straight-line approximations. With this algorithm.
a curve is approximated by a straight line segment, which is recursively split into two
segments that better approximate the curve by locating an intermediate endpoint at
the point on the curve that is farthest from the line segment thac approximates it.
After the curve is sufficiently well approximated, adjacent line segments are merged
back together if the resulting single line segment does not differ too much from tho
underlying curve. The variation of line segment endpoints due to variation in the
underlying curve is hard to characterize with this algorithm because it can depend
on events far from that anchor point. If distant parts of the edge that we are approx-
imating are occluded or noisy, this can effect the entire approximation. This is easy

4Actually we approximate this by ignoring the arctan in the expression
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to see when we consider approximating a circle, where the choice of anchor points is
essentially arbitrary, and can change greatly with slight deformations in the circle.

However, we approximate this variation simply by assuming that the endpoints
111 and 122 are held fixed. We then allow the underlying curve to differ from the two
line segments that approximate it by as much as t 2 . WXe set (2 to twice the amount
that we allowed our approximation to differ from the underlying curve, that is to six
pixels, since we know that even without sensing error, our straight line approximation
may have introduced three pixels of error. We then ask how much the location of 112
can vary while keeping the original line segments to within Q2 pixels of the new line
segments.

We allow 112 to shift either forward along 12, rotating 11. or backward along 11,
rotating 12, until the rotated line is (2 pixels from the original location of 112. As
shown in figure 6.11, if the angle formed by the two line segments, call it a' is acute,
then the amount that 112 can shift along either direction is limited by .2 pixels. If a'
is obtuse and 112 is shifted forward, we let a = 7r - a', and we let b equal arcsin('_L_)
(which we again approximating by ignoring the inverse trigonometric function). Then
the distance that 112 can shift forward is either infinite if a < b. or is V__va___ . e
compute the amount that the corner can shift backward similarly. The instability in
the point is then taken to be the maximum of the amount that it could shift forward
or backward.

Finally, we also want to take account of the fact that a slightly different approx-
imation of the edges could eliminate a corner altogether, merging 11 and /2 into one
line. So if a corner could forward more than the length of 12, or backward more than
the length of 11. we automatically rule out that corner.

This process gives us a single number for each corner which estimates its insta-
bility. We must now set a threshold for ruling out some of these corners as unstable.
We could set this threshold at the maximum error that our indexing system allows,
but our determination of maximum instability is quite conservative, and such a strict
threshold would rule out many reasonable corners. Also, in computing the instability
of corners, we have used several fairly arbitrary constants, and so the absolute insta-
bility that we compute is probably not that reliable, although the relative instability
that we compute between corners is useful. So we set a stability threshold of 15 pixels,
which is just based on our experience with the system.

There is one more possibility we take account of in computing corners, illustrated
in figure 6.12. It may happen that a pair of lines with a rounded corner is approx-
imated by two long straight lines separated by a short line. In that case. the two
corners produced by the short line will be unstable. In cases such as that, where a
sequence of one or more lines do not contribute to a stable corner, we cheek whether
the neighboring two lines can produce a stable co- ier. If so, we make use of that.

We now have a method of deriving corner points from a group of line segments.
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Figure 6.11: Two examples, for acute (below) and obtuse (above) angles, in which
l1 rotates so that it deviates from the original line by E pixels.
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Figure 6.12: In the group shown above, a rounded corner's approximation contains
a small line at the corner. If this line does not contribute to a stable corner, we may
ignore it and form a corner from its neighboring lines. Edges are shown with a lighter
weight, line approximations are shown in heavy weight. Circles show where we 'Would
like to find corners.

Since this is the only information about a group that we actually use for indexing.
there is no distinction to be made between two groups that produce the same cor-
ners, so we once again remove duplicate groups and groups that are subsets of other
groups, this time making these judgements based on the groups' points, not their line
segments. To facilitate this process, we will also merge together points that are quite
close together.

6.6 Ordering Groups by Saliency

After detecting groups in an image, we wish to use their salience to order our search
for an object. There are two factors of which we would like to take account, but so far
we have addressed only one of these. What we have not done is to look at the factors
that make two groups seem particularly likely to come from the same object. It is
necessary to form pairs of groups because a single group does not typically provide
enough points for indexing. There are plenty of clues available to tell us which pairs
of groups are especially likely to lead to successful recognition. For example, 3-D
objects often produce pairs of groups that share a line. Other clues are explored in
Jacobs[60, 59]. But we have not had a chance to explore the use of these clues in this
thesis.
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Since we have not worked on deciding which pairs of groups go particularly well
together, we decide which groups are best individually. and order our search for an
object by starting with the best groups. We have already defined the saliency of
groups, and we use this salience to order them, with one caveat. In spite of otr
precautions, it often happens that the same lines l)articipate in several similar salient
groups. We loop through all the convex groups, in order of their saliency. If none
of the lines in a group appear in a previously selected group. we select that group
now. A line has a particular orientation in a group, so we do allow one side of the
line to appear in one group, and the other side to appear in another group. On the
first pass, then, we collect together the most salient groups that come from different
regions of the image. We then repeat this process as many times as we like.

6.7 The Overall System

The most important thing about our grouping system. of course, is not its effic iency
but whether it produces useful groups. There are several ways to judge this. For our
indexing system, the important thing is that the grouping system finds some groups
repeatedly in different pictures of an object. In chapter 7 we will show experiments
that measure under what circumstances our grouping system is adequate for recogni-
tion. But we would also like to get a sense of how useful our convex grouping system
might be as a starting point for further work on grouping. For example. we know that
our method of locating point features is rather simple, and we would like to know
whether the convex groups that we form might be a good basis for a better l)oint
finder. And we would like to know whether adding constraints to our system might
winnow out some spurious groups. One way to judge the potential of our current
syst em is to just see some examples of the output that it produces.

Figures 6.13 and 6.14 show the most salient groups found by the grouping system
on an isolated telephone. Many of the groups found here show up reliably in other
pictures of the phone, taken from slightly different viewpoints or distances.

In figures 6.16 and 6.17 we see some groups found in the scene shown in figure
6.15. Almost all the telephone's convex groups are at least partially occluded in this
picture. However, we find unoccluded portions of these groups. many useful groups
from the stapler, and some of the salient structure of the mugs. Figures 6.19. 6.20.
and 6.21 show groups found in a similar scene, which is shown in figure 6.18.

Figures 6.23 and 6.24 show the results on a different scene, shown in figure 6.22,
which was taken at the ('MU calibrated image lab. Although the edges are noisy
and hard for a person to interpret, we can see that the system finds much of the
rectangular structure inherent in the buildings in the scene.

In each of the pictures shown, many of the most salient groups come entirely from
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Figure 6.1.3: This shows •lhe most salient groups in an image of a telephone. These
groups have a salience fraction of at least .75. and each group contains line segments
that do not appear with the same orientation in any more salient group. The dotted
lines show the edges of the image. There is a box around each separate group. Solid
lines show the lines that, form the group. Circles show the corners found in the group.



6.7. THIE OVERALL SYSTEM 189

_j I

\/ "\'7

\ ,7I•

/

Figure 6.14: This shows the second pass through the convex groups. The lines
segments in each group may have appeared in one previously selected group. but not
in two.
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Figure 6.15: A scene with the telephone and some other objects.



6.7. THE OVERALL SYSTEM 191

Q( I

Figure 6.16: Similarly, the most salient groups found in a. scene.
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Figure 6.17: The second most salient groups found.
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Figure 6.18: Photograph of another scene.
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Figure 6.19: This shows the most salient groups in an image of a telephone. These
groups have a salience fraction of at least .75, and each group contains line segments
that do not. appear with the same orientation in any more salient group. The dotted
lines show the edges of the image. There is a box around each separate group. Solid
lines show the lines that form the group. Circles show the corners found in the group.
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Figure 6.20: This shows the second pass through the convex groups. The lines
segments in each group may have appeared in one previously selected group. but not
in two.
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Figure 6.21: This shows the third pass through the convex groups.
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Figure 6.22: A picture from the CMU calibration lab, which was randomly selected
from David Michael's directory.
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Figure 6.2.3: First pass through the CMU picture.
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Figure 6.24: Second pass through the CMIt picture.
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the coniv'x st iruct urt of a single object, making t hem potenti Jall u,,ht I for recognt ion.

\We -Aso see milanv remaining challenges to grouping. because mail of the Prolps foun

it her (1o not appear p~ercept ually salient. or appear to 'odiilie (it llher lines fromu two
different obljets. or t, coinbiiie strong lines froni one object with n oisy or unstal,he
lines.

6.8 Conclusions

('oi\vexitv is just one p)otential grouping clue. but it is ali important olie to under-
st.and t horoughlv. Objects often contain at least some convex parts, especially in two
Imlportant apl~l)ication areas. recognition of buildings and of manufactured objects.
For such objects convi-xitv has often been used effectively to assist recognition. or

other matching problems. But con\exitY has usually been handled in ad-hoc wa's
that are sensitive to local perturbations of the image.

This Chapter shows that a simnple. global salience measure ca,) be used to etic'ient lv
find convex parts of anl image. A global definition of our output has the strong
adlvant age of allowing us to anticipate our out put. independent of unrelated context.
However, local methods have been used previously vbecause global methods appear
inefficient. \Ve show here that much of the global constraint provided bY sali,"nt
coonvexit v can be converted into a form in which it can be applied at each step of the
search, and that this allows us to build an efficient system.

\Ve (demonstrate the system's efficiency both empirically and theoretically. Our
analysis provides a quantitative understanding of when our system will be effective.
with both theory and practice leading to the same basic conclusions. We also see
under what circumstances salient convex grouping itself will be useful.

In addlition. we draw attention to some important problems in bridging the gap
between grouping and indexing. When dealing with real images. one must avoid cre-
ating spurious point features that are sensitive to noise. This is particularly important
when these features will be used for indexing, because we must assume that all. or
most of tile features found in a group actually come from the object for which we are
looking. We show how to estimate the instability of features from basic assumptions
about the error in our edge and line detection. and that this makes the output of our
grouping system much more robust.

We also show that it is in, ortant to recognition to more carefully determine both
the salience of a particular group, and the relative salience of pairs of groups. We
refer the reader to Jacobs[60. 59]. however, for a more thorough treatment of this
topic.

In chapter 7 we will examine the contribution that this grouping system can
make to a complete recognition system. Grouping will reduce the combinatorics of
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rt'(ogtiit jolt I )\ foc'usinlg our se'aricl for alt 01) jec't on sitl)se(1 s of tlile i niage t hat are Ii kel v

to all comte troin a single okject. and llt providilig us wvit ht a canonical orderihg of' t he

features ini a group. It is ntot necessary t hat every group of lines that we find in tihe
imta ge ac• tal ly conies frow the ob)ject fr which wc are looking. It is slltfi'ielnt if we

Can locate etnough image groups to allow us to recognize an o wject without hiavi •g

to cousider too naniv itnage groups. that is. our groups iteel to provile ojitts that

aret, tore likely to ctomt fromt thlie object for which we are looking than are rantlottly
selected groupls. The greater this likelihood is. the imore grouping will helpl us.

Somite of thie inotivation for using salRiet cotnexitv as a grouping clue are given
ii work tioat we referencte. Somie of tite tltoti'vation is thlie obvious fact that objects
often halve cotiex artrs that frequently i)rou(ce' convex edges ini thiet image. Hut liour-
tteoretical analvsis also helps its to see wthen salient contvexit" will be useful. If a
ratt(lotit prou'ss is Unlikely to prodttce ntany salient contvex group)s. thant thite grOup)s

that we do lind wOill he likely to reflect some of the underlying structure of thie scetne.



"202 CHAPTER 6. CONVEX GROUPING



Chapter 7

A Recognition System

7.1 Linking the Pieces Together

\Ve have now described the main components of a recognition system. W\e have shown
how to form groups of image points, how to use these groups to index into a data
base. matching them to geometrically consistent groups of model points, and how to
use these matches to generate hypothetical poses of additional model features. In this
chapter we link these pieces together to see how they interact. This will give us some
idea of the potential value to a complete recognition system of both our indexing and
our grouping system. It will also point out areas where further study is required.
\Ve begin by describing how we combine the modules that we have developed into
a complete system. In the course of this description, we will mention a number of
thresholds that are used. We give the values of these thresholds together, at the end
of the description.

In the preprocessing stage we must represent groups of model points in a lookup
table. We do this with the following steps. First we take a series of photographs
of an isolated object. Then we run our grouping system on each photograph. We
look at the most salient groups found in each image, along with their point features.
to determine, "y hand, which groups are found consistently. This step is somewhat

subjective, although it could be automated if we had a CAD model of the object. and
knew the viewing direction of each picture. Then. by hand, we match the points that
these groups produce between all the images. We now have a list of groups of model
points. and for each group we have the location of the points in a number of images.
'We form some additional groups from subsets of these groups. If a group produces at
least four point features, we may form new groups of points by removing one of the
points in the initial group. This will allow us to match that group if one of its points
is not detected in the image. The choice of which subsets of groups to represent in
our lookup table is also subjective, and based on a juigement of which groups are

203
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likely to be detected in an image with a missing point feature. These model groups
typically produce three to five point features. which are not enough with which to
perform indexing. So we form all pairs of these groups, giving us group-pairs that
contain six or more points.

For each group-pair. there are only some orderings of the point feat ures that we
need to represent in our lookup taable. First of all, we know the order of points
around the perimeter of each convex group. \\:e consider each point in the group a
potential starting point in ordering the whole group, b)ut then given a starting point.
the order of the remaining points is determined by just proceeding clockwise about
the group. If one of the groups in a group-pair has more point features. we pili this
group's points first, knowing that we will be able to impose the same ordering at Iui
time. If the groups have the same number of point feat ures we must consider p utt ing
either group first. So if the two groups have uit and n 2 points. the total numnber
of possible orderings of these points is 111112 if nI -$ i.,. and is 2u m112 if 1)i = It,.

Thus we see that grouping allows us to reduce the total number of p)ossible orderings
significantly: without grouping there would be (ti + u2)! orderings to colsider. For
any ordering of the points, the first three points are used as a basis for compiut ing t he
affine coordinates of the remaining points, with the second point used as the origin of
this basis. If we represent all of these orderings of each group-pair in our table. then
we may perform indexing using any one of these orderings of a pair of image groups.
and we are gtiaranteed to find the matching ordering of the model points in our table.
In practice, in some of our experiments we explicitly represent in the table only one
of the n12 possible orderings of the second group in the pair, in order to save compile
time and space. This requires us to perform indexing by considering all possible
orderings of the points in the second group of a pair of image groups. and to combine
the results. These two methods will produce the same output, because they each
compare all matches between the image and the model points. While in a working
recognition svstem we would not want to sacrifice run time efficiency for compile time
efficiency and space savings, this can be a useful trade-off when experiienting with
a system.

As described in chapter -4, given a series of images of each ordered set of points.
we compute the affine coordinates of the points in each image. and then determine
the lines in n and 3 space that correspond to this group-pair. We determine which
cells these lines intersect in a discretized version of these affine spaces. The method
of discretization is also described in chapter 4. In each intersected cell. we place a
l)ointer to the group-pair. Accessing a cell. then, produces a list of model group-pairs
that could produce an image with affine coordinates that fall somewhere in that cell.
These steps produce two hash tables that represent the n and 3 spaces. Each cell in
the two spaces that is not empty is represented in the appropriate table. hashed by
its coordinates.
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\Ve must also represent a model's line segments during preprocessing, so that we
may use them to verify hypotheses. To do this we choose b)v hand a small set of line
segments that represent some of tile boundary of tile object, and that have endpoints
tl .t reliably appear in our images of tile isolated model. This process could also be
a oniated. In the tests below, we choose line segments whose endpoints all belong
t- the model groups that we have chosen. Chapter -1 (lescribes how we use images
of the endpoints of these line segments to derive lines in o and .3 space. \\e derive
a different pair of lines for each triple of points that we have used as a basis for
computing the atiine coordinates of one of tile group-pairs. So for every three I)oiats

that we might use as a basis for comp)uting the affine coordinates of image points
for indexing, we have also use(d those points as a basis for representing the mlodel's
line segments. Therefore. whenever indexing p)roduces a match b)etween model and
image points. we mar use that match to determine tile location of tile endpoints of
the model s line segments.

We may also represent more than one object in our indexing tal)les in just tihe
same way that we represent a single object.

At run time. we begin by applying our grouping system to all image of a scene
that contains the object that we seek. This provides us with a set of convex groups.
along with a saliency fraction that measures the Value of each group. \\e drop convex
groups if the total length of their line segments falls below some threshold. There
are then many different ways that we could order pairs of these groups for indexing.
\"e choose a simple method that demonstrates some of the value of these groups.
As describedc in chapter 6. we make one pass through the convex groups. picking tlie
most salient ones subject to the constraint that each side of each line segment call
appearl in only one convex group. This typically produces between ten and twenty-
five different convex groups for an image of moderate size. Then we form all pairs
of these convex groups. \We now have some freedom as to how to order the points
in this group-pair. If the two convex groups each have the same itumlber of points.
we rTay put either one first, otherwise we put the group with the most p)oints first.
And we may pick any point as the starting point in the first convex group, which
deternmines the three points that we will use as a basis. Of all the possible orderings
availal)le to us, we choose the one that seems to provide the most stable affine basis.
As a simple way of judging tlte stability of art affine basis, we consider how the affine
coordinates of a, point described in that basis will change if we perturb them slightly.
Then, if we have only made an ent rv for one ordering of thie second convex groups in
the index tables. we must perform lookups with all orderings of those points at run
time. Note that when we change time ordering of points in tlte second convex group
this will not affect the basis l)oints, and so we only need to reorder tile indices we
use in the lookup, we do not need to recompute affine coordinates. or the effects of
error. \Ne perform indexing with each set of points, as described in chapter 4. This
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associates a list of matching sets of model points with each group-pair found in the
image. XWe then order these group-pairs based on the number of matches found for
each.

Beginning with the image group-pair that matches the fewest sets of model points.
we generate hypotheses about the location of the model in the scene. When an
image group-pair matches more than one model group-pair. we order these matches
arbitrarily. For each match, we use the techniques described in chapter -1 to find the
position of the endpoints of the model's line segments in the image implied by a least
squares fit between the model and image points that indexing has matched. \\e then
use these line segments to get an overall idea of the value of a hypothesis. Fir-t
we only consider a hypothesis if it results in projected model line segments whose
cumulative length is above some threshold. This guards against the possibility that a
match will cause the model to project to a very small area of the image. where most
of its edges could be matched to texture or noise. We then match each model line
segment to an image line segment if the image segment is completely within sone fixed
distance of the projected model segment. and if the angles of the two line segments
are similar. More than one image segment may be matched to a model segment.
but the total length of the matching image segments cannot exceed the length of
the matching model segment. We then divide the length of the image segments
that we have matched to the model by the length of the lprojected model segments.
determining what fraction of the model we have matched. In the experiments below.
we have examined hypotheses for which this fraction was above some threshold.

This method of verifying an hypothesis is designed to be an easy method of de-

ciding whether we have the right match. It could certainly Ie improved. Most
immportantly. in verification, and also in indexing, we have not taken advantage of the
fact t Jt not all features of the model are visible from all viewpoints. In indexing.
this nieans that we assume that the model points come from a wire-frame model.
and we may match image points to model points with the implicit assumption of a
viewpoint from which the model points would not actually be visible. In verification.
this means that we make no effort to perform hidden line elimination. This can result
in hypotheses that produce impossible projections of the model. Our goal. however.
has been to demonstrate just the essentials of a recognition systen.

The system that we have described requires us to choose a number of thresholds,
which we have mentioned throughout the text. We summarize these choices here. We
used a single set of values for these thresholds in all the experiments we describe in
this chapter. In running the (anny edge detector. we used a o, of two for Gaussian
smoothing. In the split-and-merge algorithm, which we describe in chapter 6. we
approximated edges with line segments such that the edges were all within no more
than three pixels of the line segments. Wh,-n grouping. we used a saliency fraction
of .75. In chapter 6 we show why that is a good choice in terms of efficiency and of
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the size of the output. Some thresholds are also used when determining whether two
lines are nearly collinear, for in that case we allow a slight concavity in the convex
groups. However. we do not discuss our method of judging near-collinearit'. When
determining the stability of corner features, we assume that the endl)oints of line
segments are allowed to vary by five pixels. The variation in the relative position
of two endpoints is additionallv limited to be at most 10V of the distance between
them. Wh'lien determining the stability of corners formed by pairs of connected line
segments. we assume that the underlying curve may differ by up to six pixels from
tihe approximating line segments. \We compute the possible variation in the location
of a corner due to these errors. and only make use of corner features whose location
can vary by fifteen pixels or less. If two or more corners are within two pixels of each
other, we compress them into a single corner, located at their average. This allows
us to eliminate groups of points that are nearly identical. \We only use groups for
indexing if they contain at least three point features, and if the sum of the length of
their line segments exceeds one hundred pixels. In indexing, we divide each dimension
of the index space into fifty parts. These intervals are not uniforim and are described
in chapter 4. \W\e only represent sections of affine space between i wenty-five and minus
twenty-five. When indexing, we allow for an error of five pixels in the location of point
features. When performing verification we require a projected model's lines to have
a collective length of at least one hundred pixels. We match a model line to an image
line if the entire image line is within ten pixels of the model line. and if their angles
(liffer b1 no more than Although a significant number of thresholds are used in
the entire system, the core components contain few important thresholds. The basic
grouping system has just one threshold, the salience fraction. and we have shown
both analytically and experimentally how this may be chosen. Several thresholds are
used in building the indexing table; these determine the accuracy with which we will
represent affine space. And a sni. 'J! threshold is used when indexing to measure our
uncertainty about the location of features.

7.2 Experiments

VWe have run some experiments with this system to provide the reader with an idea
of the kinds of images that it can handle. Our main goals are to provide examples
of when the grouping system will be sufficient to help recognize an object, to show
that the indexing system provides correct. matches when the grouping system finds
correct image groups. and to provide som( 'a c- the overall reduction in search that
grouping and indexing can provide. We also want to give an example of the kind of
interactions that can occur between grouping and indexing. Finally, we want to see
where the overall system breaks down. This can help tell us which aspects of this
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system are attractive candidates for additional work.
In these experiments the system recognizes a telephone. This is an object that

contains many significant convex parts. Oil the other hand, the telephone that we use
is still quite challenging to our system because it contains many curved edges as well.
Some of these curves are gentle, for example the corners of the phone are generally
rounded. But even these gentle curves can cause unstable corner points.

Figure 7.1 shows edges found in two images of the isolated telephone used to build
a model of the phone. Circles in these images show corner features that appear in
salient convex groups. The ones that are used in the model are numbered for reference.
Figures 6.13 and 6.14 in chapter 6 show some of the more salient convex groups found
in one of these images. Figure 7.2 shows another example of these groups. including
some of the groups used in building the model. We only model the portion of the
telephone that call be seen from the front, right side. to alleviate problems caused by
the lack of hidden line elimination, and to simplify model building. We form groups
whose point features have the following indices: (14 15 16 18) (13 :3 :35 36) (31 32 33
34) (11 17 19 20 21) (11 17 19 21) (11 17 19 20) (11 17 20 21) (11 19 20 21) (17 19 20
21) (9 10 17 11 22) (9 10 17 11) (9 10 17 22) (9 10 11 22) (9 17 11 22) (10 17 11 22)
(9 10 11) (10 17 11) (10 17 22) (9 10 17) (0 1 11 22) (0 17 11 22) (1 1".12) (0 1 2 :4
22) (0 1 2 :3 4) (1 2 3) (41 42 4:3) (19 50 51 20) (20 50 51) (19 50 51). For verification.
we represent the model with line segments that connect the points: (0 1) (1 2) (2 :1)
(3 4) (0 9) (9 10) (9 11) (11 17) (10 17) (3 13) (13 12) (12 4) (14 15) (15 16) (16 18)
(18 14) (1 1:3) (10 12) (17 19). Examples of the projection of these line segments are
shown later on, when we show examples of the system running. These segments only
describe part of the phone's boundary: since our focus is not on accurate verification
we have built only a simple model of some of the phone's line segments, which serves
to tell us when we have a reasonably good match.

To test the system. we have taken several series of photographs. In each series we
begin with the isolated telephone. and add objects to the foreground and background
to make the scene progressively more complex. This gives us an idea of when the
system will work, and when it will break down. We begin by showing each scene,
the edges found in it. and the correct answer, when it is also found. We will then
describe more details of the algorithm's performance. and analyze its successes and
failures more carefully.

For example, figure 7.3 shows a picture of the isolated telephone and the edges
found in this image. Figure 7.4 shows the 83'rd hypothesis that the svstem generates
about the location of the telephone in the scene, which is correct. In this figure.
lines indicate the hypothesized location of model line segments. The edges found in
the image are shown with dots. Figure 7.5 shows the same scene, with some objects
added to the background. The figure also shows the edges found in this scene. Figure
7.6 shows the correct hypothesis, which was found for that image. In figure 7.7 we
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Figure 7.1: Edges from two of the images used to build models of the telephone.
Circles show all the point features that appear in a convex group with saliency greater
than .75. The numbered circles are the points that appear in groups that are actually
used in our model of the telephone. Although numbers between 0 to 51 are used,
there are only 29 numbered points.
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Figure 7.2: This shows the most salient, groups found in one of the images of the
telephone. These groups have a saliency fraction of at least .75. and each group
contains line segments that. do not appear with the same orientation in any more
salient group. Dotted lines connect. all the lines that were used to form a convex
group. There is a box around each separate group. Circles show the corners found in
the group. This shows examples of groups formed using points with the indices: (14
1.5 16 18). (9 10 17 22). (31 32 3:3 34), (41 42 43), and (19 50 51 20). See figure 7.1
for a key to these corner numbers.
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add an occluding object. in front of the telephone. The system again finds the correct
hypothesis. which is shown in figure 7.8. It is interesting to note that this correct
hypothesis is slightly different from the one found in the previous images: one less
point is matched. This appears to be due to slight variations in thie out put of t lie edge
detector. which cause one corner to disappear. In figure 7.9 we add another occluding
object. to make tihe image a little more difficult. Again. figure 7.10 shows tihe correct
answer. Figure 7.11 shows an additional occlusion. which causes the systemi to fail.
In this image. one of the groups use([ to generate tihe previous correct hypotheses is
partially occluded. Two more series of tests are shown in figures 7.12 through 7.22.

These tests give us a rough idea of the kinds of iniages on which the system will
work. \We see that our system can tolerate moderate amounts of occlusioni. because
maii local groups are represented in the lookup table. and onil two must be found
in the image to make recognition possible. \Ve would also like to get some idea of
the slpeedup with which grouping and indexing can provide us for these images. We
can determine this partlv by recording tile number of incorrect hypotheses that the
svstemn had to consider before reaching a correct hypothesis. The system correctlI
recognized the telephone in eight of the figures above. figures 7.3. 7.5). 7.7. 7.9. 7.12.
7.11. 7.17. and 7.19. In these images, the correct hypothesis was the 83"rd. 62"nd.
163'tlh. 80'th. 2nd, 168"th. 325"t h. and 545"th hypot hesis considered. In figure 7.13 we
show a second correct hypothesis, which was the 8th one found. These figures show
that grouping and indexing together can reduce the amount of costly verihicationl
required to a small amount. For comparison, consider what might happen if we
used simple alignment without grouping or indexing. The images shown produce
hundreds of point features, of which l)erhaps ten or twenty might actually come from
point features in the model. Therefore we would expect to have to search through
thousands of triples of image features before finding three that could all match points
in our model. For each of these triples of image points we would have to consider
all triples of model points. Since we use about thirty model points. we would have
to match each triple of image points to tens of thousands of triples of mnodel points.
Our total expected search. then. before finding a correct match could be in the tells
of millions. Our experiments also show that the amount of work required tends to
grow with the complexity of the scene. but again, more slowly than would a simple
alignment system.

Although we already have a system that can recognize ob)jects in moderately corn-
plex scenes, in some ways this is still a preliminary system. It is therefore particularly
important to understand p)roblems that may exist in the current systeni. and how we
might work to overcome them. \We will mention three difficulties. First. and most
importantly, we ask why the system fails in some cases to recognize objects. These
failures always occur because the grouping system has not located more than one
convex group in the image that it can match t.o tile model. Second. we examine
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Figure 7.4: This shows the correct hypothesis. which the system found, for the
image shown in the previous figure. Lines, which indicate the hypothetical location
of model lines, are shown superimposed over a dotted edge map of the image. Circles
indicate the location of image points that were used for indexing. Squares show the
liypothesized location of the corresponding model points.
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Figure 7.6: This shows the correct .vpotliesis. which tle svsI found. for th lieiage
Shown InII lie Iprevious figure.
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Figure 7.10: This shows the correct hypothesis, which the system found, for the
image shown in the previous figure.
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.... . ... .. . ... . . .

Figure 7.13: This shows two correct hypotheses, which the system found, for the
image shown in the previous figure.
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Figure 7.18: This shows the correct hypothesis. which ,the sstem found, for the

inage showni in the prev ious figure.
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Figure 7.20: This shows the correct hypothesis. which the system found. for the

image shown in the Ipreviotls figure.
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the performance of the indexing system now that it is coupled to a grouping system.
Finally, we will show some relatively minor problems that occur due to our simplistic
method of verification. These final problems should be easily resolved.

In examining the failures in our grouping system, we find a number of simple
problems that could be easily fixed to improve the system's performance. \Ve also
find a few intriguing failures, that illustrate some difficult problems that remain.

Occlusion is one of the main reasons that we may fail to find a group in an image.
Of course if a corner point is occluded, there is no way to find it. We partially
compensate for this by including some subsets of the groups in our lookup table, but
this is only effective if the occlusion is not too great. Our grouping system may also
be effective if part of a group that does not contribute to a corner point is occluded.
but again, if the occlusion is too great. the salience of the group may be significantly
lowered. Figure 7.10 shows an example of a partly occluded group that is still found
and used to recognize an object.

A pervasive prollem in the examples that we have shown is that many potentially
useful groups are found in the image which we have not represented in our lookup
table. For example, each row of buttons on the front of the telephone tends to produce
a salient parallelogram in the image. Also, we did not represent the front rectangle
of the telephone. which includes points: (1 2 3 13) (figure 7.1 shows the locations
of all numbered points), because the line from point 1 to point 13 usually did not
appear when we were building our model. However, this group was found in the
image shown in figure 7.21, for example, as is shown in figure 7.32, and the presence
of that group in the model would have allowed the system to recognize the telephone
in that image. A number of other salient groups contain corners that came entirely
from the telephone, but were not represented in the lookup table. There is some
danger in representing too many groups in our model. Since all pairs of groups must
be entered in the lookup table, increasing the number of groups produces quadratic
growth in the space requirements of the system. in the compile time requirements
of the system, and presumably in the number of spurious matches produced by the
system. However, it seems that significantly better performance could be achieved
without too great a cost by perhaps doubling the number of groups used.

We should also mention that the failure of the system to find some convex groups
appears to be due problems in the system that we have not diagnosed. Also, the
system eliminates small groups from consideration, and this seems in practice to have
caused it to bypass some useful groups, particularly the ones with points (31 32 33

34).
Overall, it seems that with some quite straightforward effort the system could

succeed in recognizing the telephone in all the images shown in this chapter. We can
also see. however, that the system fails to find some groups due to problems that
would be more challenging to address. One such problem is that a salient, potentially
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useful group can be overshadowed by a more salient, but spurious group that uses
some of the same liles. For example. in figures 7.26 and 7.27 we can see that the
group of lines forming the inner square of the keypad, which produces points (14 15
16 1S), appears among the set of the second most salient groups in the image, because
an occlusion produces a more salient group that contains some of the same lines. The
general problem of determining which groups are most meaningful and should be used
to attempt recognition is quite a challenging one. Our salience fraction provides only
a rough and simple solution.

Also, sometimes an extraneous or occluding line may be included in a group.
contributing to an extra point feature. For example, if one closely examines the group
in figure 7.30 that appears to produce points (10 17 11), one sees that point 11 is not
found, but that an occlusion produces a new point near this location. This group.
although slightly incorrect, does contribute to the successful recognition of the object.
To handle these sorts of problems, one would need to reason about which points in
a group reflect some essential structure, and which points come from occluding or
spurious lines. This problem seems quite difficult.

We can also see examples in which the instability of point features can cause
difficulties. There are several examples of groups in which one or more point features
do not appear due to slight changes in the underlying edges. For example, if one
closely compares the correct hypotheses shown in figures 7.6 and 7.8, one sees that
point 22 disappears in the second image, even though the underlying scenes and edges
appear almost identical. In this case, the problem is handled because we represent
that group in the model both with and without this point. As another example, in
figure 7.30, we can see that in the group containing points (1 2 3 13) there are two
nearby corner points where we would expect point 1 alone to be found. In both these
cases. slight variations in the edges can lead to changes in the resulting line segments
that either produce or eliminate a corner. While we partially handle this problem,
our solution is still not complete.

Overall, we can see that our convex grouping system is quite successful at finding
salient convex collections of lines that can be used to recognize objects. More work
could be done, however, to determine the best ways of making use of these groups.
This includes the problems of determining which point features are due to some stable
underlying structure, the problem of determining which groups are most salient and
most likely to be useful, and the problem of determining which groups should be
paired together.

Our experiments also demonstrate the effectiveness of our indexing system. We
found no examples in which indexing failed to match a group-pair of image features
to the appropriate model features. And by indexing with many image group-pairs
and beginning our search with the ones that matched the fewest model group-pairs
we also produced short searches.
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\\e can also see some potential for interference, though. between the speedups
provided by grouping and the speedups provided by indexing. Indexing using groups
provided by our grouping system produced lower speedups than indexing using ran-
doin point features did in our earlier tests. It is not hard to see why. Our grouping
system will produce collections of model points and collections of image points that
will cluster in certain portions of our lookup tables. For example, the first four points
in a group-pair often come from a single convex group. If these four points are mu-
tually convex, this restricts the set of possible affine coordinates that can describe
them. If four points come from a single convex group, than the fourth point cannot
have affine coordinates that are both negative, or that are both positive and sum
to less than one, for example. Also. our grouping system frequently produces pairs
of groups in which the points in each group are nearby, and the points in different
groups are widely separated. This again causes both models and images to cluster
in certain parts of the lookup table, reducing the potential speedups of indexing. In
effect, grouping is doing some of the same work as indexing. Since we only consider
matching image points collected together by our grouping system to model points col-
lected together by grouping, grouping is causing us to only consider matches that are
more likely to be geometrically consistent than are random image and model groups.
This ireans that when indexing precisely enforces geometric consistency, some of the
constraint in this consistency has been already more roughly used by the grouping
system.

Finally, we mention that our recognition system produces some incorrect hypothe-
ses that nevertheless pass the thresholds used by our verification system. One reason
for this is the simple nature of our verification module. Since we use a few line seg-
ments to model the telephone, and since we do not perform hidden line elimination,
there are some quite incorrect poses that match a significant number of image lines.
An example of this is shown in figure 7.36. This could be handled by a more careful
verification system. A second problem can occur if we generate a hypothesis that is
almost, but not quite correct, as shown in figure 7.37. In this case, the inner square
of the keypad in the image is matched to the outer square of the keypad in the model.
In order to handle this problem, we would need some method of improving our esti-
mate of pose by changing it slighdy. We have not attempted to address problems of
verification in this work, however.
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Figure 7.23: Some of the most salient groups found in the image shown in figure 7.3.
These are the groups with the highest salience fraction, given that no line segment is
allowed to appear in more than one group with the same orientation. These groups
are continued in the next figure. It is this set of groups that is used in our recognition
tests.
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Figure 7.24: The rest of the most salient groups found in the image shown in figure
7.3.
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Figure 7.25: A set of the next most salient groups found in the image in figure 7.3.
These groups contain lines that may have appeared in a previously chosen salient
group. These groups were not used in our recognition tests.
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Figure 7.26: This shows the most salient groups found in the image shown in figure
7.11.
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Figure 7.27: This shows the second most salient groups found in the image shown
in figure -7.11.
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Figure 7.28: The most salient groups fournd in the image shown in figure 7.17. These
are the groups with the highest salience fraction, given that no line segment is allowed
to appear in more than one group with the same orientation. It is this set of groupsthat is used in our recognition tests.
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Figure 7.29: The set of the second most salient groups found in the image shown in
figure 7.17. These groups were not used in the recognition tests.
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Figure 7.32: This shows the most salient groups found in the image shown in figure
7.21.
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Figure 7.33: This shows the second most salient groups found in the image shown
in figure 7.21.
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Figure 7.3.5: This shows the second most salient groups found in the image shown

in figure 7.22.
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Figure 7.36: More than half of this incorrect hypothesis still matches image line
segments, due to the simplicity of the model that we use for verification. As a result,
this hypothesis passes our verification threshold.
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Fi !e 7.37: In this hypothesis, the inner square on the keypad of the phone in the
image is matched to the outer square in the model. This results in a hypothesis that
is just a little wrong.
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7.3 Conclusions

This chapter has shown that the grouping and indexing systems that we have built
can form useful components of a complete recognition system. Our indexing system
provides correct matches while using point features located in noisy images by a real
feature detector. Our grouping system finds many salient groups that are useful for
recognition. Together, we have shown that these two subsystems have the potential
to dramatically reduce the amount of search required to locate objects.

One implication of this is that the systems we have built can serve as major
components for a practical recognition system in certain domains. Our grouping
system will support recognition of objects that have a number of convex parts, at
least some of which appear unoccluded in images. And in some domains simple
methods of pairing convex groups, using connectivity or proximity for example, may
quickly provide pairs of groups that come from a single object. The recognition
of buildings using aerial imagery, or the recognition of many manufactured parts in
factory environments are two examples of domains in which our grouping system may
be adequate as it is, or with simple modifications. And we have demonstrated that
our indexing system is sutficiently robust to be useful whenever grouping can provide
us with groups of image points that come from the points of a precompiled model
group.

Our system also demonstrates the potential of a recognition strategy based on
grouping and indexing. The effectiveness of this strategy is limited by our grouping
system's ability to produce groups of many image point features that all come from a
single object. There is much work to be done before such grouping can be performed
reliably in many realistic domains. We have pointed out some of these challenges,
already. We must integrate many different grouping clues to achieve robustness when
salient convexity alone is insufficient. We must learn to combine small groups into
larger groups effectively. And we must robustly derive point features from groups
of edges that are often curved or noisy. The greatest potential of indexing will be
realized only as we learn to produce larger groups of point features that more reliably
match our models. But we have shown that our present grouping system is already
sufficient to produce significant speedups in a variety of real situations. As methods
of grouping improve, the effectiveness of our strategy will be increased further.
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Conclusions

This thesis considers both difficult long-term questions of visual object recognition
and more practical short-term questions involved in building useful applications. To
do this we have developed an understanding of recognition in a domain of simple
features. In this domain, we have shown that achieving human performance requires
a strategy that can control the complexity of the problem, and that grouping and
indexing together have the potential to do this. We have also developed tools that
allow us to come to grips with some fundamental questions of recognition, such as:
"How should we describe a 2-D image so that we can use this description to access
our memory of 3-D objects?", and we have provided an example of how the difficult
problem of grouping can be approached. At the same time, we have produced some
tools that can be of practical value in building recognition systems of more limited
scope. We have developed a useful grouping system and an efficient indexing system
for point features, and we have broadened our understanding of the effects of error on
recognition systems. Our goals in this chapter are to describe the connection between
our analysis of a simple domain and the larger problem of general object recognition,
and to describe the strengths and limitations of our practical tools, making it clear
where more work is needed.

8.1 General Object Recognition

In the introduction, we sketched a view of general object recognition that involves
isolating interesting chunks of the image and describing them in a way that can trigger
our memories. This approach to recognition gives rise to difficult questions. How do
we divide the image into usable pieces? How do we describe these pieces of the image?
Is the description in 2-D, 3-D or some mixture of the two? Why would we want to
capture some properties of an image in our description, while ignoring others? What

251
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is the role of context, prior knowledge, and the needs of the particular situation in
determining what is a good description? And perhaps most importantly, why might
this overall strategy provide a good way of recognizing objects? In this thesis we have
considered a simplified domain where it is easier to thoroughly understand some of
these questions.

We can see in our domain that computational complexity presents a tremendous
challenge to object recognition systems. Moreover, this does not seem to be an
artificial problem produced by the simplicity of the domain, for it appears that as
we make our domain more realistic, problems of complexity will only grow worse.
We have also shown the relationship between grouping and indexing. Each of these
tools has only limited potential by itself to control complexity. Grouping limits our
search within the image, but does not reduce the number of models that we must
compare to an image group. Indexing can only significantly reduce our search if we
can perform indexing with large groups of image features. Without grouping, we
have no efficient way of finding a reasonable number of groups with which to perform
indexing. Although a strategy of using grouping and indexing for recognition may

seem obvious, it is useful to see the necessity of this strategy in a concrete domain.
Also, there has been much work on indexing using invariants in recent years. and
relatively little work on grouping. It is important to stress that this work on indexing,
while valuable, is only half the picture. Without more effective grouping techniques,

indexing may be applied to only very simple kinds of images, in which very simple
grouping methods will work.

The center of this thesis has been devoted to characterizing the images that a
model can produce, and to showing the value of simple solutions to this problem.
We have shown that indexing models that consist of point features is equivalent
to matching a pair of points, in two image spaces, to pairs of lines that represent

possible groups of model points. The spaces are simple Euclidean ones, and any
point can correspond to an image, while any line can correspond to a model. By
reducing indexing to a simple, symmetric form, we have produced a powerful tool for
analyzing various approaches to recognition.

This work allows us to see the limitations in our domain of attempts to infer 3-D
structure from a single 2-D image. We see that there are no invariant functions for
general 3-D models, that there are no sure inferences of 3-D structure, and that the
arguments sometimes put forward to explain the value of perceptually salient struc-
tures such as parallelism and svmmetry have significant limitations. These results
have clear implications for recognition within our domain. They do not settle the
issue for more complicated domains. We cannot infer 3-D structure in a world of
point features in which we make no assumptions about the a priori distribution of
objects. This does not mean that, this structure cannot be inferred in more realistic
domains. But we have shown that explanations of 3-D inference, or of the special role



8.1. GENERAL OBJECT RECOGNITION 253

of perceptually salient structures must lie outside the domain that we have studied.
Many past approaches to understanding these problems have been so general as to
apply to any domain, and we can see that these explanations must fail.

We have not directly addressed the question of why oue description of an image
should be used to access memory instead of another. But our conception of visual
memory as a problem of geometric matching in some image space provides a frame-
work for addressing this question. A vocabulary for describing images can be a way
of creating an image space and decomposing it into equivalence classes that medi-
ate matching. When we describe an image with a set of quantitative values, we are
defining an image space. When we describe an image qualitatively, we are making a
commitment to treating that image a. the same as other images that have the same
description. That is, we are dividing image space up into chunks, and treating im-
ages that map to the same chunk of image space in the same way. A simple, analytic
description of the images that a model can produce in an image space provides us
with a tool for understanding the value of any particular choice of image space. or
any method of decomposing that space qualitatively.

At the same time, the symmetry of the geometric problem that underlies recog-
nition seems to preclude an answer to this problem in our domain. For example. it is
this symmetry that undermines attempts to explain the value of descriptions based
on non-accidental properties such as collinearity; it turns out that collinearity is no
different from an infinite number of other features. In a similar way. any attempt
to prefer one way of describing an image over another seems to be vulnerable to the
symmetry of the simple geometric problem that is equivalent to visual memory.

This means that to provide an answer to some of the questions that we have
raised, we must push forward into more complex domains. There seem to be two
particularly important ways in which our current domain is too qimple. First. we
assume that models consist of collections of local features instead of surfaces. By
expanding our work to surfaces we would be able to describe a world consisting of
arbitrary polyhedral objects, a domain of considerable complexity. It is of great
interest whether the 3-D structure of a scene may be inferred from a single image
of polyhedral objects. As we have pointed out, there has been much work on this
problem, but. it. remains challenging. It is particularly difficult and important to
incorporate a notion of error and featuie detection failures into such a world. Second.
we have implicitly assumed that. there is no structure to the kinds of objects that
our world contains. We assume that all collections of point features are possible
objects. and make no attempt to make use of hypotheses about the likelihood of
different possible objects actually occurring, that. is, we make no assumptions about
prior distributions of objects in the world. In the real world objects are solid and
self-supporting, they grow or evolve or are constructed to function in a world that has
many physical constraints. Categories of objects exist naturally: for example there
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are inherent ways in which all camels are similar, and only certain ways in which
they may differ. All these effects cause significant patterns in the kind of objects that
actually exist. It may be that these patterns account for the kinds of representations
that people use in recognizing objects. There are many possible sources of constraint
that could contribute to the superiority of some methods of describing images for
recognition. Do these constraints lie only in the imaging process! do they lie in the
requirement that objects be solid and connected? do they" lie in the nature of our
physical world? or do they lie in the history of evolution, in the particular set of
objects that nature has placed in our world, and in the particular way that categories
of these objects may vary? We have looked at only the simplest source of possible
constraints, and found it inadequate. We have ignored other elements of the real
world of considerable importance. In particular, we mention that our work makes no
attempt to explain how we recognize new instances of a category of object with which
we are familiar, and that we have considered only the simplest instances of non-rigid
objects. But gaining a firmer understanding of a simple domain should provide a
useful step in understanding these more complex ones.

Grouping is also a difficult problem. We simplify it significantly by focusing
on only a single grouping clue. salient convexity. It seems clear that ultimately
we shnul!d combine many clues into a grouping system. By choosing one clue we
bypass the problem of understanding others, and the particularly difficult problem of
integrating multiple clues. We have used a probabilistic analyvsis to show under what
circumstances convex groups may be salient and worth using in recognition. This
analysis and our experiments also show that these groups may be located efficiently.
By thoroughly understanding some individual grouping clues, we can contribute to a
more complete approach that integrates these clues.

Finding convex groups may be useful also because they provide us with regions of
the image that might be used to focus an analysis of color, texture or other region-
based descriptions. For example, it has proven difficult to segment an image solely
using texture, but if convex regions are found using our methods first, it may be
easier to use cues such as texture to decide which groups are useful, and to decide
which ones should be paired together. Also, if we intend to integrate many clues.
it is especially important to be able to characterize the performance of each module
that makes use of an individual cue. So in thoroughly exploring one grouping clue.
we have attempted to produce work that will be useful to a more ambitious effort.

We have also used this grouping system to help us explore the interaction between
grouping and indexing. \We find that even an imperfect grouping system may be of
value to a recognition system. We also show how a grouping system can simplify
the problem of finding a correspondence between an image and a model group by
providing additional information about. the groups. In our case, convex groups provide
information about how to order the point features that we find. This can be used to
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limit the number of matches that we lmtust consider.
There are many aspects of grouping that are still poorly understood. We have

mentioned that we have not explored other grouping cues, or the problem of jite-
grating different cues. We have also not studied the use of some prior knowledge of
what we expect to see in a scene, which might vary from situation to situation. In
addition, we should stress that many problems remain in determining just how to use
shape to perform grouping. There are many object parts that are not convex, such
as the tail of a cat, or a banana. Convexity is only one salient shape: we do not have
a good characterization of what makes a set of image edges appear to form a part of
an object. Furthermore, even when using convexity for grouping. the role played by
context is not well understood. We showed in chapter 6 that purely local methods of
finding convex groups run into problems, missing good. globally salient groups. But
it is also clear that the lines surrounding a convex group can affect its salience, and
our approach does not fully take account of this.

We have attempted to support the idea that ambitious recognition problems are
best handled with grouping and indexing by showing that this strategy is practical
and useful in a simple domain. At the same time, by exploring indexing thoroughly
in a simple domain, and by exploring a simple grouping clue thoroughly, we hope to
create theoretical and practical tools that can help lead us to a solution to the larger
problems of recognition. By characterizing the images that a model can produce.
we have created a powerful new tool for understanding the advantages of and the
limitations to various ways of describing an image so that we can remember the
object that produced it.

8.2 Practical Object Recognition

In the previous section we traced the connections between this thesis and approaches
to understanding the process of recognizing objects with the capabilities of a human.
There are many less ambitious recognition problems of considerable practical value.
We have shown that in these domains, simple grouping techniques and indexing using

point features can combine to overcome some current difficulties.
It is quite computationally intensive to even recognize a single rigid 3-D object

in a realistic image. Techniques for doing this are usually either slow or apply to
a domain in which simple grouping or indexing methods are useful. By expanding
the range of useful grouping and indexing techniques we can expand the range of
application domains within which we can recognize objects. Some indexing systems
have been applied to 3-D recognition, but actually use indexing to match planar parts
of an image to planar parts of a model. Other 3-D indexing methods require large
amounts of space, and may introduce errors. We have developed an indexing system
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that can handle arbitrary groups of 3-D points, and we have shown how to account for
error in this svstein. Moreover, we have shown how to represent models for indexing
in tile most space-efficient possible way. This provides us with a method of indexing
that should be more complete, more accurate, and more efficient than previous ones.

At the same time. there is certainly room for improvement in our basic system. As
we have pointed out. since error can affect different image grotps to varying extents,
one should represent the index table at several different levels of discretization. to
allow one to look in the table quickly with either large or small error regions. This is
an implementation detail. A more challenging improvement to our system would be
to more carefully account for the effects of image error. \\"e simplify the problem by
placing a rectanguloid about what is actually a more complicated error region. We
have shown. however, that there is the potential to achieve greater speedups from
the indexing system if we remove this simplification. These changes would be clear
improvements to the basic system that we have presented.

This basic system relies on representing models' lines using a simple tessellation of
index space. There are a number of ways that we might improve upon that method.
First, if the number of model groups represented is not too great, it might be simpler
and cheaper to just explicitly compare a group of image points to each group of model
points. In that case, our representation gives us a very quick method of comparison:
we need only find the distance between a point and a line in a high dimensional space
to get a measure of the compatibility of an image and model group. Second. there is no
reason to think that a simple tesselation of image space is the best way to represent
image space. The problem of matching a rectangle to lines in a high-dimensional
space has the familiar flavor of other computational geometry problems that have
been solved more accurately and efficiently using other methods of representing a
Euclidean space. We can also imagine that even if we want to tesselate thie space, that
it might prove more efficient, and sufficiently accurate. to represent lower-dimensional
projections of the high-dimensional image spaces that we use. We have not explored
these paths, however. Third, our system' requires considerable space in order to
account for partial occlusions of image groups. and uncertainties in the ordering
of points in these groups. For example. if we form a pair of convex groups that
each produce four featu1 ý points, we must consider thirty-two different orderings for
these points. W,\e might instead use a canonical ordering of points. An example
of a canonical ordering for a different indexing method can be found in Clemens
and Jacobs[32]. We might also try to find ways of representing groups of points
so that we can quickly match them to subgroups found in tile image. even when
these subgroups are missing some of the model points due to occlusion. In general,
the space requirements of our current system can be rather high because we must
represent some permutations and subsets of each group of model points. So work
aimied at limiting the need to represent all these variations on a single basic group
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could be of practical value.

If we could find more space-efficient methods of representing image space we could

also hope to efficiently ple [f1 in indexing with more complicated features whose man-

ifolds may not decompose into 1-D subLxanifolds. For example. it seems that if we

simply tessellate image space we will need large amounts of space to handle oriented

point features. These features could be quite valuable, however. Vertices contain sig-

nificantly more information about the object than do simple point features. Thomp-

son and Mundy[100] have built an effective system using vertices, but the space that
their system requires to represent even a small number of groups of vertex features is

quite high.

Even oriented point features are relatively simple, and it might also be valuable to
understand how to index more complicated image features. For example, it could be

quite useful to determine how to represent the images that a 3-D curve can produce

when viewed from all directions. We have analyzed non-planar models of points or
oriented points by using invariant descriptions of planar models. and then character-
izing the set of planar models that can produce the same affine invariant description

as a single 3-D model. There are already invariant descriptions available "Ir planar

curves, but we do not know how to characterize the sct of iffine-invariant descrip-

tions that a 3-D curve may produce. Then too, all of the above features assume that

some fixed portion of a 3-D model will project to a corresponding image feature as the

viewpoint changes. That is, these are all essentially wire-frame models. When objects
have curved surfaces, different portions of the object create contours in the image as
the viewpoint changes. So it. would be particularly valuable to understand how to

characterize the edges that a curved 3-D surface can produce from different view-

points. That problem goes well beyond what we have done in this thesis, but might
be accomplished using the same basic strategy of characterizing the affine invariant
feature descriptions that a 3-D model may produce. This work seems essential if we

are to efficiently recognize complex objects that do not contain some simple point
features that can be reliably located in images.

Perhaps the biggest bottleneck in recognition systems lies in the grouping p~roblem.

and we are far from understanding how to build good general grouping systems.
But it is not hard to build a useful grouping system for a limited domain, and any
improvement in these methods widens the range of applications for our vision systerns.

For example. practical systems have been built that rely on grouping together vertices
connected bY a line, or that rely on finding parallelograms in an image. These systenis

are useful for locating objects that produce such groups, when occlusion is limited.
We have attempted to push forward the range of objects that grouping can handle
by finding general convex groups of lines. And we have focused on improving the

robustness of grouping systems by optimizing a global criteria that measures the
salience of these groups. Salient convexity will not be an effective grouping method
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for all objects or all types of images. But we are able to characterize when it will be
effective bv determining the level of salience that a group must possess for our system
to be able to efficiently locate it.

One of the things that proves difficult in using grouping to recognize an object
is that grouping is most effective when we may assume that all of the features in an
image group come from the object for which we search. This can cause two types of
prolWems. First, if a group is partially occluded, we must sort out which part of the
group comes from the object for which we are looking, and which part comes from
the occlusion. This is quite difficult, although Clemens[30] provides one example of
such reasoning. The second problem is that even if grouping provides us with a set
of edges that all come from a single object, we must reliably turn those edges into
features. Simple methods of finding lines or vertices in edges may work when objects
are completely polyhedral. But even real objects that appear polyhedral usually
contain many curves. These can result in lines or vertices that appear or disappear
due to changes in the viewpoint or due to small amounts of sensing error. We need a
method of detecting local features that will find the same features from a set of edges
regardless of error or changes in viewpoint. We have made some progress on this
problem. but our methods could stand considerable improvement. And improved
methods of finding local 2-1) features robustly from the projections of 3-D models
would be of value to many other approaches to recognition, as well as to stereo or

motion systems.

8.3 A Final Word

In conclusion, we view this thesis as an initial formulation of a strategy for under-
standing how to recognize objects as well as humans do, including some concrete steps
towards implementing that strategy. Often the best way to clarify a difficult problem
is to attack it in a simple domain where some real understanding may be gained. This
is only true, however, if we continue to ask the hard questions even as we answer some
easier versions of them. For this reason, although this thesis has provided answers
to some questions of practical importance, we want to stress the questions that are
raised and perhaps brought into sharper focus by this thesis. The most important of
these questions is: How can we describe an image so that this description can remind
us of an object? In this thesis we have attempted to provide some tools that can help
us to analyze different possible answers to this question.



Appendix A

Projective 3-D to 2-D
Transformations

In Chapter 2 we show geometrically that when a group of 3-D points form an im-
age under perspective projection, that the set of images they can produce must be
represented by at least a 3-D surface in any index space. Here we derive a slightly
stronger result algebraically. We show that for any 3-D model, three of the projective
invariants of the model's images can take on any set of values. This appendix will rely
on some knowledge of elementary analytic projective geometry. The interested reader
may refer to many introductory books on geometry, including Tuller[102]. Our de-
scription of the analytic formulation of projection from 3-D to 2-D will closely follow
Faugeras[42].

In projective geometry we analytically represent points in the plane using three
coordinates, which we will call x, y and w. This representation has the property that
(xo, yo, wo) represents the same point as (xl, yl, wl) if and only if there exists some
non-zero value k such that (xo, yo, wo) = k(xo, yo, wo). We similarly represent 3-d
points using quadruples of coordinates, which we will call x, y, z and w.

A projective transformation can be defined as one v.hich applies any perspective
projection to a set of 3-D points, and then applies any 2-D projective transformation
to the resulting 2-D points. In this case, a group of 3-D points, P1, P2, ...pyz can produce
a set of 2-D points, qi, q2- ... qn if and only if there exists a four by three matrix, M,
and a set of scalars, kl,k 2,...k,, such that, for all i, kiqi = Mpi. In brief, this is
allowable because a 3-D projective transformation can map any five points to any
other five points, while a 2-D transformation maps any four points to any other four
points.

If we assume that there are no degeneracies in the model or image, then without
loss of generality we may set: P1 = (1,0,0,0),p2 = (0, 1,0,0),p3 = (0,0, 1,0),p4 =
(O,O,O, 1),p5 = (1,1, 1, 1), and ql - (1,O,O),q2 = (0, 1,O),q3 = (0,0, 1),q4 = (1,1,1).

259
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The remaining points may take on any values, and we denote them as: p6 = (p', p6. P&, p" ) q.5
(qf, q', q`), q6 =(q', qY, qf')

This implies that the matrix Al has the form:

ki0 0 k4
k 2 0 k4

S0 kA3 4,4

The values of kI, k2 , k3, k4 can only be determined up to a multiplicative factor,
because any two matrices that are identical up to a multiplicative factor will produce
the same images, since two points are identical when their coordinates are multiples.
So, without loss of generality we can set k4 to 1, leaving three unknowns.

From the projection of the fifth and sixth points we find that:

k1 + 1 = ksqs k 2 + 1 k5qy k3 + 1 = ksqs
kip' + p6 = k6 q6 k2P' + p,' = k6qy k3P6 + P6' = k6q6

The question becomes, for a particular set of values for p•, p6, pz, pu', which provides
all information about the projective shape of the model points, what values can be
produced for q•', q', q', q i q , q U, which tells us the projective shape of the image
points, given that kl, .A../ can take on any values.

Except for degenerate cases, if we choose any values for q', q", q', qx, q", the first,
four and the sixth of the above equations give us five independent linear equations
with five unknowns. Therefore, we can find values of ki to produce any set of values
for these five image coordinates. The value of these image coordinates will in turn
determine the value of q6.

The fifth and sixth image points each give rise to two projective invariants, the
values: IL, 2, 46,, and 4. We have shown that any model can produce an image that

q5 5 F, q6
Las any values for three of these invariants, and that the model's structure, along with
the values of three of these invariants will determine the value of the fourth.
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